Key Players of the Immunosuppressive Tumor Microenvironment and Emerging Therapeutic Strategies

被引:23
作者
Park, Kevin [1 ,2 ]
Veena, Mysore S. [1 ,2 ]
Shin, Daniel Sanghoon [1 ,2 ,3 ,4 ]
机构
[1] Dept Med, Div Hematol Oncol, Los Angeles, CA USA
[2] Univ Calif Los Angeles, VA Greater Angeles Healthcare Syst, Los Angeles, CA USA
[3] Mol Biol Inst, Los Angeles, CA USA
[4] Jonsson Comprehens Canc Ctr, Los Angeles, CA USA
来源
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY | 2022年 / 10卷
关键词
tumor microenvironment; cancer; immune escape; immune checkpoint inhibitors; immunotherapy; clinical trials; REGULATORY T-CELLS; ANTITUMOR IMMUNE-RESPONSES; MHC CLASS-II; CANCER-ASSOCIATED FIBROBLASTS; GROWTH-FACTOR-BETA; SUPPRESSOR-CELLS; DENDRITIC CELLS; TGF-BETA; INFLAMMATORY MONOCYTES; MYELOID CELLS;
D O I
10.3389/fcell.2022.830208
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The tumor microenvironment (TME) is a complex, dynamic battlefield for both immune cells and tumor cells. The advent of the immune checkpoint inhibitors (ICI) since 2011, such as the anti-cytotoxic T-lymphocyte associated protein (CTLA)-4 and anti-programmed cell death receptor (PD)-(L)1 antibodies, provided powerful weapons in the arsenal of cancer treatments, demonstrating unprecedented durable responses for patients with many types of advanced cancers. However, the response rate is generally low across tumor types and a substantial number of patients develop acquired resistance. These primary or acquired resistance are attributed to various immunosuppressive elements (soluble and cellular factors) and alternative immune checkpoints in the TME. Therefore, a better understanding of the TME is absolutely essential to develop therapeutic strategies to overcome resistance. Numerous clinical studies are underway using ICIs and additional agents that are tailored to the characteristics of the tumor or the TME. Some of the combination treatments are already approved by the Food and Drug Administration (FDA), such as platinum-doublet chemotherapy, tyrosine kinase inhibitor (TKI) -targeting vascular endothelial growth factor (VEGF) combined with anti-PD-(L)1 antibodies or immuno-immuno combinations (anti-CTLA-4 and anti-PD-1). In this review, we will discuss the key immunosuppressive cells, metabolites, cytokines or chemokines, and hypoxic conditions in the TME that contribute to tumor immune escape and the prospect of relevant clinical trials by targeting these elements in combination with ICIs.
引用
收藏
页数:24
相关论文
共 247 条
[1]   Integrating tumor hypoxic stress in novel and more adaptable strategies for cancer immunotherapy [J].
Abou Khouzam, Raefa ;
Goutham, Hassan Venkatesh ;
Zaarour, Rania Faouzi ;
Chamseddine, Ali N. ;
Francis, Amirtharaj ;
Buart, Stephanie ;
Terry, Stephane ;
Chouaib, Salem .
SEMINARS IN CANCER BIOLOGY, 2020, 65 :140-154
[2]   Tim-3 finds its place in the cancer immunotherapy landscape [J].
Acharya, Nandini ;
Sabatos-Peyton, Catherine ;
Anderson, Ana Carrizosa .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2020, 8 (01)
[3]   Phase I Study of the CD47 Blocker TTI-621 in Patients with Relapsed or Refractory Hematologic Malignancies [J].
Ansell, Stephen M. ;
Maris, Michael B. ;
Lesokhin, Alexander M. ;
Chen, Robert W. ;
Flinn, Ian W. ;
Sawas, Ahmed ;
Minden, Mark D. ;
Villa, Diego ;
Percival, Mary-Elizabeth M. ;
Advani, Anjali S. ;
Foran, James M. ;
Horwitz, Steven M. ;
Mei, Matthew G. ;
Zain, Jasmine ;
Savage, Kerry J. ;
Querfeld, Christiane ;
Akilov, Oleg E. ;
Johnson, Lisa D. S. ;
Catalano, Tina ;
Petrova, Penka S. ;
Uger, Robert A. ;
Sievers, Eric L. ;
Milea, Anca ;
Roberge, Kathleen ;
Shou, Yaping ;
O'Connor, Owen A. .
CLINICAL CANCER RESEARCH, 2021, 27 (08) :2190-2199
[4]  
Ascierto PA, 2017, ANN ONCOL, V28
[5]   Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance [J].
Bagchi, Sreya ;
Yuan, Robert ;
Engleman, Edgar G. .
ANNUAL REVIEW OF PATHOLOGY: MECHANISMS OF DISEASE, VOL 16, 2021, 2021, 16 :223-249
[6]   Hypoxia-inducible factor (HIF) inhibitors: a patent survey (2016-2020) [J].
Ban, Hyun Seung ;
Uto, Yoshikazu ;
Nakamura, Hiroyuki .
EXPERT OPINION ON THERAPEUTIC PATENTS, 2021, 31 (05) :387-397
[7]   Cancer-associated fibroblasts an their influence on tumor immunity and immunotherapy [J].
Barrett, Richard Lee ;
Pure, Ellen .
ELIFE, 2020, 9
[8]   Resistance to Checkpoint Inhibition in Cancer Immunotherapy [J].
Barrueto, Luisa ;
Caminero, Francheska ;
Cash, Lindsay ;
Makris, Courtney ;
Lamichhane, Purushottam ;
Deshmukh, Rahul R. .
TRANSLATIONAL ONCOLOGY, 2020, 13 (03)
[9]   Expression of the Long Non-Coding RNA HOTAIR Correlates with Disease Progression in Bladder Cancer and Is Contained in Bladder Cancer Patient Urinary Exosomes [J].
Berrondo, Claudia ;
Flax, Jonathan ;
Kucherov, Victor ;
Siebert, Aisha ;
Osinski, Thomas ;
Rosenberg, Alex ;
Fucile, Christopher ;
Richheimer, Samuel ;
Beckham, Carla J. .
PLOS ONE, 2016, 11 (01)
[10]   LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells [J].
Brand, Almut ;
Singer, Katrin ;
Koehl, Gudrun E. ;
Kolitzus, Marlene ;
Schoenhammer, Gabriele ;
Thiel, Annette ;
Matos, Carina ;
Bruss, Christina ;
Klobuch, Sebastian ;
Peter, Katrin ;
Kastenberger, Michael ;
Bogdan, Christian ;
Schleicher, Ulrike ;
Mackensen, Andreas ;
Ullrich, Evelyn ;
Fichtner-Feigl, Stefan ;
Kesselring, Rebecca ;
Mack, Matthias ;
Ritter, Uwe ;
Schmid, Maximilian ;
Blank, Christian ;
Dettmer, Katja ;
Oefner, Peter J. ;
Hoffmann, Petra ;
Walenta, Stefan ;
Geissler, Edward K. ;
Pouyssegur, Jacques ;
Villunger, Andreas ;
Steven, Andre ;
Seliger, Barbara ;
Schreml, Stephan ;
Haferkamp, Sebastian ;
Kohl, Elisabeth ;
Karrer, Sigrid ;
Berneburg, Mark ;
Herr, Wolfgang ;
Mueller-Klieser, Wolfgang ;
Renner, Kathrin ;
Kreutz, Marina .
Cell Metabolism, 2016, 24 (05) :657-671