On graphic Bernstein type results in higher codimension

被引:36
作者
Wang, MT [1 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
关键词
D O I
10.1090/S0002-9947-02-03108-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Sigma be a minimal submanifold of Rn+m that can be represented as the graph of a smooth map f : R-n bar right arrow R-m. We apply a formula that we derived in the study of mean curvature flow to obtain conditions under which Sigma must be an a ne subspace. Our result covers all known ones in the general case. The conditions are stated in terms of the singular values of df.
引用
收藏
页码:265 / 271
页数:7
相关论文
共 14 条
[1]  
BARBOSA J, 1980, J DIFFER GEOM, V14, P3055
[2]  
ECKER K, 1990, J DIFFER GEOM, V31, P397
[3]   SOME RIGIDITY THEOREMS FOR MINIMAL SUB-MANIFOLDS OF THE SPHERE [J].
FISCHERCOLBRIE, D .
ACTA MATHEMATICA, 1980, 145 (1-2) :29-46
[4]  
Fu L, 1998, HOUSTON J MATH, V24, P415
[5]   CALIBRATED GEOMETRIES [J].
HARVEY, R ;
LAWSON, HB .
ACTA MATHEMATICA, 1982, 148 :47-157
[6]   HARMONIC-MAPPINGS AND MINIMAL SUB-MANIFOLDS [J].
HILDEBRANDT, S ;
JOST, J ;
WIDMAN, KO .
INVENTIONES MATHEMATICAE, 1980, 62 (02) :269-298
[7]   Bernstein type theorems for higher codimension [J].
Jost, J ;
Xin, YL .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1999, 9 (04) :277-296
[8]  
JOST J, 2001, BERNSTEIN THEOREM SP
[9]   NONEXISTENCE, NON-UNIQUENESS AND IRREGULARITY OF SOLUTIONS TO MINIMAL SURFACE SYSTEM [J].
LAWSON, HB ;
OSSERMAN, R .
ACTA MATHEMATICA, 1977, 139 (1-2) :1-17
[10]   A Bernstein type theorem for minimal volume preserving maps [J].
Ni, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (04) :1207-1210