A Comparison of a Direct Electron Detector and a High-Speed Video Camera for a Scanning Precession Electron Diffraction Phase and Orientation Mapping

被引:18
|
作者
MacLaren, Ian [1 ]
Frutos-Myro, Enrique [2 ]
McGrouther, Damien [1 ]
McFadzean, Sam [1 ]
Weiss, Jon Karl [3 ]
Cosart, Doug [3 ]
Portillo, Joaquim [4 ,5 ]
Robins, Alan [4 ]
Nicolopoulos, Stavros [4 ]
Nebot del Busto, Eduardo [6 ]
Skogeby, Richard [6 ]
机构
[1] Univ Glasgow, Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland
[2] Univ Glasgow, Sch Engn, Glasgow G12 8QQ, Lanark, Scotland
[3] NanoMEGAS USA, 1095 W Rio Salado Pkwy,Suite 110, Tempe, AZ 85281 USA
[4] NanoMEGAS SPRL, Bd Edmond Machtens 79 Bte 22, B-1080 Brussels, Belgium
[5] Univ Barcelona, Ctr Cient & Tecnol, Sole & Sabaris 1-3, Barcelona 08028, Spain
[6] Quantum Detectors Ltd, R104,RAL, Oxford OX11 0QX, England
基金
英国工程与自然科学研究理事会;
关键词
electron crystallography; electron microscopy; direct electron detectors; crystallographic orientation mapping; precession electron diffraction; STEM; GRAIN; TOMOGRAPHY; MICROSCOPE; EFFICIENCY; CRYSTALS; TEM;
D O I
10.1017/S1431927620024411
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A scanning precession electron diffraction system has been integrated with a direct electron detector to allow the collection of improved quality diffraction patterns. This has been used on a two-phase alpha-beta titanium alloy (Timetal (R) 575) for phase and orientation mapping using an existing pattern-matching algorithm and has been compared to the commonly used detector system, which consisted of a high-speed video-camera imaging the small phosphor focusing screen. Noise is appreciably lower with the direct electron detector, and this is especially noticeable further from the diffraction pattern center where the real electron scattering is reduced and both diffraction spots and inelastic scattering between spots are weaker. The results for orientation mapping are a significant improvement in phase and orientation indexing reliability, especially of fine nanoscale laths of alpha-Ti, where the weak diffracted signal is rather lost in the noise for the optically coupled camera. This was done at a dose of similar to 19 e(-)/angstrom(2), and there is clearly a prospect for reducing the current further while still producing indexable patterns. This opens the way for precession diffraction phase and orientation mapping of radiation-sensitive crystalline materials.
引用
收藏
页码:1110 / 1116
页数:7
相关论文
共 50 条
  • [41] High-speed and high-precision deflectors applied in electron beam lithography system based on scanning electron microscopy
    Liu, ZM
    Gu, WQ
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2004, 22 (06): : 3557 - 3559
  • [42] PROGRESS IN THERMAL SURFACE MODIFICATION BY ELECTRON-BEAM HIGH-SPEED SCANNING
    SCHILLER, S
    PANZER, S
    LASER VS THE ELECTRON BEAM IN WELDING, CUTTING AND SURFACE TREATMENT, PTS 1 AND 2: STATE OF THE ART 1989, 1989, : 2 - 20
  • [43] SCANNING ELECTRON-MICROSCOPY AS RELATED TO STUDY OF HIGH-SPEED FIBER IMPACT
    LAIBLE, RC
    FIGUCIA, F
    KIRKWOOD, B
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1973, : 79 - &
  • [44] HIGH-SPEED X-RADIOGRAPHIC CAMERA FOR USE IN ELECTRON-BEAM ENVIRONMENT
    WOOD, DS
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1973, 44 (03): : 307 - 310
  • [45] Electrode temperature measurements of multi-phase AC arc by high-speed video camera
    Tanaka, M.
    Ikeba, T.
    Liu, Y.
    Matsuura, T.
    Watanabe, T.
    12TH HIGH-TECH PLASMA PROCESSES CONFERENCE (HTPP-12), 2012, 406
  • [46] AN ELECTRON-OPTICAL PHASE-SHIFT ELEMENT FOR HIGH-SPEED ELECTRON-BEAM TESTING
    THONG, JTL
    NIXON, WC
    MEASUREMENT SCIENCE AND TECHNOLOGY, 1990, 1 (04) : 337 - 344
  • [47] NONCONTACT HIGH-SPEED WAVEFORM MEASUREMENTS WITH THE PICOSECOND PHOTOELECTRON SCANNING ELECTRON-MICROSCOPE
    MAY, PG
    HALBOUT, JM
    CHIU, GLT
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1988, 24 (02) : 234 - 239
  • [48] High-precision deformation mapping in finFET transistors with two nanometre spatial resolution by precession electron diffraction
    Cooper, David
    Bernier, Nicolas
    Rouviere, Jean-Luc
    Wang, Yun-Yu
    Weng, Weihao
    Madan, Anita
    Mochizuki, Shogo
    Jagannathan, Hemanth
    APPLIED PHYSICS LETTERS, 2017, 110 (22)
  • [49] Electron backscattered diffraction using a new monolithic direct detector: High resolution and fast acquisition
    Wang, Fulin
    Echlin, McLean P.
    Taylor, Aidan A.
    Shin, Jungho
    Bammes, Benjamin
    Levin, Barnaby D. A.
    De Graef, Marc
    Pollock, Tresa M.
    Gianola, Daniel S.
    ULTRAMICROSCOPY, 2021, 220
  • [50] PSEUDOREPLICA ELECTRON-MICROSCOPY FOR THE DETECTION OF ROTAVIRUS - COMPARISON WITH HIGH-SPEED CENTRIFUGATION ELECTRON-MICROSCOPY AND ELISA
    ELMEKKI, A
    ALNAKIB, W
    SETHI, SK
    ELKHALIK, DA
    ALWUHAIB, M
    JOURNAL OF VIROLOGICAL METHODS, 1984, 9 (01) : 79 - 85