A Comparison of a Direct Electron Detector and a High-Speed Video Camera for a Scanning Precession Electron Diffraction Phase and Orientation Mapping

被引:19
作者
MacLaren, Ian [1 ]
Frutos-Myro, Enrique [2 ]
McGrouther, Damien [1 ]
McFadzean, Sam [1 ]
Weiss, Jon Karl [3 ]
Cosart, Doug [3 ]
Portillo, Joaquim [4 ,5 ]
Robins, Alan [4 ]
Nicolopoulos, Stavros [4 ]
Nebot del Busto, Eduardo [6 ]
Skogeby, Richard [6 ]
机构
[1] Univ Glasgow, Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland
[2] Univ Glasgow, Sch Engn, Glasgow G12 8QQ, Lanark, Scotland
[3] NanoMEGAS USA, 1095 W Rio Salado Pkwy,Suite 110, Tempe, AZ 85281 USA
[4] NanoMEGAS SPRL, Bd Edmond Machtens 79 Bte 22, B-1080 Brussels, Belgium
[5] Univ Barcelona, Ctr Cient & Tecnol, Sole & Sabaris 1-3, Barcelona 08028, Spain
[6] Quantum Detectors Ltd, R104,RAL, Oxford OX11 0QX, England
基金
英国工程与自然科学研究理事会;
关键词
electron crystallography; electron microscopy; direct electron detectors; crystallographic orientation mapping; precession electron diffraction; STEM; GRAIN; TOMOGRAPHY; MICROSCOPE; EFFICIENCY; CRYSTALS; TEM;
D O I
10.1017/S1431927620024411
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A scanning precession electron diffraction system has been integrated with a direct electron detector to allow the collection of improved quality diffraction patterns. This has been used on a two-phase alpha-beta titanium alloy (Timetal (R) 575) for phase and orientation mapping using an existing pattern-matching algorithm and has been compared to the commonly used detector system, which consisted of a high-speed video-camera imaging the small phosphor focusing screen. Noise is appreciably lower with the direct electron detector, and this is especially noticeable further from the diffraction pattern center where the real electron scattering is reduced and both diffraction spots and inelastic scattering between spots are weaker. The results for orientation mapping are a significant improvement in phase and orientation indexing reliability, especially of fine nanoscale laths of alpha-Ti, where the weak diffracted signal is rather lost in the noise for the optically coupled camera. This was done at a dose of similar to 19 e(-)/angstrom(2), and there is clearly a prospect for reducing the current further while still producing indexable patterns. This opens the way for precession diffraction phase and orientation mapping of radiation-sensitive crystalline materials.
引用
收藏
页码:1110 / 1116
页数:7
相关论文
共 23 条
  • [11] Precession Electron Diffraction-assisted Crystal Phase Mapping of Metastable c-GaN Films Grown on (001) GaAs
    Ruiz-Zepeda, Francisco
    Casallas-Moreno, Yenny L.
    Cantu-Valle, Jesus
    Alducin, Diego
    Santiago, Ulises
    Jose-Yacaman, Miguel
    Lopez-Lopez, Maximo
    Ponce, Arturo
    MICROSCOPY RESEARCH AND TECHNIQUE, 2014, 77 (12) : 980 - 985
  • [12] Deformation mapping in theTEM by dark holography,nanobeam diffraction,geometrical phase analysis and precession electron diffraction. A comparison of the different techniques
    Cooper, David
    Bernier, Nicolas
    Rouviere, Jean-Luc
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2015, 71 : S102 - S103
  • [13] Methods for orientation and phase identification of nano-sized embedded secondary phase particles by 4D scanning precession electron diffraction
    Rauch, E. F.
    Veron, M.
    ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2019, 75 : 505 - 511
  • [14] Orientation and phase mapping in the transmission electron microscope using precession-assisted diffraction spot recognition: state-of-the-art results
    Viladot, D.
    Veron, M.
    Gemmi, M.
    Peiro, F.
    Portillo, J.
    Estrade, S.
    Mendoza, J.
    Llorca-Isern, N.
    Nicolopoulos, S.
    JOURNAL OF MICROSCOPY, 2013, 252 (01) : 23 - 34
  • [15] Microstructural Characterization by Automated Crystal Orientation and Phase Mapping by Precession Electron Diffraction in TEM: Application to Hot Deformation of a γ-TiAl-based Alloy
    Singh, Vajinder
    Mondal, Chandan
    Bhattacharjee, P. P.
    Ghosal, P.
    MICROSCOPY AND MICROANALYSIS, 2019, 25 (06) : 1457 - 1465
  • [16] Suppressing dynamical diffraction artefacts in differential phase contrast scanning transmission electron microscopy of long-range electromagnetic fields via precession
    Mawson, T.
    Nakamura, A.
    Petersen, T. C.
    Shibata, N.
    Sasaki, H.
    Paganin, D. M.
    Morgan, M. J.
    Findlay, S. D.
    ULTRAMICROSCOPY, 2020, 219
  • [17] High-precision deformation mapping in finFET transistors with two nanometre spatial resolution by precession electron diffraction
    Cooper, David
    Bernier, Nicolas
    Rouviere, Jean-Luc
    Wang, Yun-Yu
    Weng, Weihao
    Madan, Anita
    Mochizuki, Shogo
    Jagannathan, Hemanth
    APPLIED PHYSICS LETTERS, 2017, 110 (22)
  • [18] High spatial resolution semi-automatic crystallite orientation and phase mapping of nanocrystals in transmission electron microscopes
    Moeck, P.
    Rouvimov, S.
    Rauch, E. F.
    Veron, M.
    Kirmse, H.
    Hausler, I.
    Neumann, W.
    Bultreys, D.
    Maniette, Y.
    Nicolopoulos, S.
    CRYSTAL RESEARCH AND TECHNOLOGY, 2011, 46 (06) : 589 - 606
  • [19] Quantitative imaging of anti-phase domains by polarity sensitive orientation mapping using electron backscatter diffraction
    Naresh-Kumar, G.
    Vilalta-Clemente, A.
    Jussila, H.
    Winkelmann, A.
    Nolze, G.
    Vespucci, S.
    Nagarajan, S.
    Wilkinson, A. J.
    Trager-Cowan, C.
    SCIENTIFIC REPORTS, 2017, 7
  • [20] A method for crystallographic mapping of an alpha-beta titanium alloy with nanometre resolution using scanning precession electron diffraction and open-source software libraries
    MacLaren, Ian
    Frutos-Myro, Enrique
    Zeltmann, Steven
    Ophus, Colin
    JOURNAL OF MICROSCOPY, 2024, 295 (02) : 131 - 139