Filiform corrosion on 6000 series aluminium: Kinetics and inhibition strategies

被引:6
作者
Coleman, A. J.
McMurray, H. N.
Williams, G.
Afseth, A.
Scamans, G.
机构
[1] Univ Coll Swansea, Sch Engn, Mat Res Ctr, Swansea SA2 8PP, W Glam, Wales
[2] Novelis, CH-8212 Neuhausen, Switzerland
[3] Innoval Technol, Banbury OX16 1TQ, Oxon, England
来源
ALUMINIUM ALLOYS 2006, PTS 1 AND 2: RESEARCH THROUGH INNOVATION AND TECHNOLOGY | 2006年 / 519-521卷
关键词
aluminium; filiform; Kelvin probe; hydrotalcite; polyaniline;
D O I
10.4028/www.scientific.net/MSF.519-521.629
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High levels of surface shear experienced during rolling, grinding or machining can cause 6000 series aluminium to develop an ultra-fine grained surface layers which dramatically increase susceptibility to filiform, corrosion (FFC) under paint films. In-situ Scanning Kelvin Probe (SKP) measurements in humid air are used to compare the kinetics and mechanism of FFC on abraded and lacquer-coated samples of high copper containing AA6111 and low level copper AA6016. FFC is initiated by applying a small volume of aqueous HCl to a penetrative defect on polyvinylbutyral (PVB) coated alloy samples prior to placement in a chamber maintained at constant humidity and temperature. The SKP is then repeatedly scanned over a fixed surface area to produce a time-lapse animation showing the dynamic evolution of localized free corrosion potential patterns. The spatial distribution of potential variation provides insight into the FFC mechanism and the numerical integration of areas of dissimilar potential provides a measure of the time-dependent area of coating delamination. Various possible FFC inhibition strategies are investigated for use under circumstances where removal of the surface layer prior to application of an organic (paint) coating is not feasible. The two strategies shown in this paper are the use of an anti-corrosion pigments based on an intrinsically conducting polymer called polyaniline. An anion-exchange pigment called hydrotalcite is also used.
引用
收藏
页码:629 / 633
页数:5
相关论文
共 7 条
[1]  
BREUR R, 2003, WORK INSTRUCTION ACE
[2]  
COLEMAN AJ, 2005, 16 INT CORR C BEIJ
[3]   Inhibition of filiform corrosion on organic-coated aluminum alloy by hydrotalcite-like anion-exchange pigments [J].
McMurray, HN ;
Williams, G .
CORROSION, 2004, 60 (03) :219-228
[4]   Electroactive conducting polymers for corrosion control Part 1. General introduction and a review of non-ferrous metals [J].
Tallman, DE ;
Spinks, G ;
Dominis, A ;
Wallace, GG .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2002, 6 (02) :73-84
[5]   Clays and catalysis: a promising future [J].
Vaccari, A .
APPLIED CLAY SCIENCE, 1999, 14 (04) :161-198
[6]   Factors affecting acid-base stability of the interface between polyaniline emeraldine salt and oxide covered metal [J].
Williams, G ;
McMurray, HN .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (09) :B42-B45
[7]   Chromate inhibition of corrosion-driven organic coating delamination studied using a scanning Kelvin probe technique [J].
Williams, G ;
McMurray, HN .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (10) :B377-B385