Thermal simulation and system optimization of a chilled ceiling coupled with a floor containing a phase change material (PCM)

被引:44
作者
Belmonte, J. F. [1 ,2 ]
Eguia, P. [3 ]
Molina, A. E. [1 ,2 ]
Almendros-Ibanez, J. A. [1 ,2 ]
机构
[1] Univ Castilla La Mancha, Dept Mecan Aplicada & Ingn Proyectos, Escuela Ingn Ind, Albacete 02071, Spain
[2] Renewable Energy Res Inst, Sect Solar & Energy Efficiency, Albacete 02071, Spain
[3] Univ Vigo, Dept Maquinas & Motores Term, Escuela Ingn Ind, Pontevedra 36200, Spain
关键词
Building simulation; Building-HVAC system optimization; Phase change materials; ENERGY STORAGE; INTEGRATION; BUILDINGS;
D O I
10.1016/j.scs.2014.09.004
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The integration of phase change materials (PCMs) for cooling applications in buildings reduces the amplitude of indoor air temperature fluctuations due to solar and internal gains, enabling passive solar, HVAC system downsizing or off-peak cooling designs. This work studies the use of radiant systems for discharging heat stored in a PCM; this approach differs from the typical practice of accomplishing this task by either night cooling ventilation or embedding an active heat exchanger into the PCM of the wall. In this study, a PCM is incorporated into the floor, and a hydronic radiant ceiling system is used as the energy discharge system. The advantages and disadvantages of this configuration in terms of cooling energy demands and thermal comforts of occupants are analyzed using the simulation software TRNSYS. Five design parameters are optimized using the software GENOPT (R). The simulation reveals that when accompanied by an air-to-air heat recovery system, this configuration can significantly reduce the cooling energy demand (more than 50% compared to the cooling energy demand of the same building without PCM) and can thus significantly reduce the energy consumption. However, the degrees of occupant comfort will inevitably vary (i.e., the predicted percent dissatisfied (PPD) increases by 2-5%). (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:154 / 170
页数:17
相关论文
共 32 条
[1]   Building integration of PCM for natural cooling of buildings [J].
Alvarez, Servando ;
Cabeza, Luisa F. ;
Ruiz-Pardo, Alvaro ;
Castell, Albert ;
Tenorio, Jose Antonio .
APPLIED ENERGY, 2013, 109 :514-522
[2]  
[Anonymous], 2001, THERMAL RAD HEAT TRA
[3]  
[Anonymous], 2009, ASHRAE HDB FUND, VI-P, p1.1
[4]  
Arseneault J., 1970, NATL RES COUNCIL CAN
[5]  
ASHRAE, 2012, ASHRAE HDB HEAT VENT
[6]   Designing building envelope with PCM wallboards: Design tool development [J].
Bastani, Arash ;
Haghighat, Fariborz ;
Kozinski, Janusz .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 31 :554-562
[7]   Materials used as PCM in thermal energy storage in buildings: A review [J].
Cabeza, L. F. ;
Castell, A. ;
Barreneche, C. ;
de Gracia, A. ;
Fernandez, A. I. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (03) :1675-1695
[8]   Experimental study of using PCM in brick constructive solutions for passive cooling [J].
Castell, A. ;
Martorell, I. ;
Medrano, M. ;
Perez, G. ;
Cabeza, L. F. .
ENERGY AND BUILDINGS, 2010, 42 (04) :534-540
[9]   Thermal analysis of a ventilated facade with PCM for cooling applications [J].
de Gracia, Alvaro ;
Navarro, Lidia ;
Castell, Albert ;
Ruiz-Pardo, Alvaro ;
Alvarez, Servando ;
Cabeza, Luisa F. .
ENERGY AND BUILDINGS, 2013, 65 :508-515
[10]   ANALYSIS OF COLLECTOR-STORAGE BUILDING WALLS USING PHASE-CHANGE MATERIALS [J].
GHONEIM, AA ;
KLEIN, SA ;
DUFFIE, JA .
SOLAR ENERGY, 1991, 47 (03) :237-242