Automated Quantification of Enlarged Perivascular Spaces in Clinical Brain MRI Across Sites

被引:2
作者
Dubost, Florian [1 ]
Duennwald, Max [2 ,3 ]
Huff, Denver [2 ]
Scheumann, Vincent [2 ]
Schreiber, Frank [2 ]
Vernooij, Meike [1 ,5 ]
Niessen, Wiro [1 ,6 ]
Skalej, Martin [4 ]
Schreiber, Stefanie [2 ]
Oeltze-Jafra, Steffen [2 ,7 ]
de Bruijne, Marleen [1 ,8 ]
机构
[1] Erasmus MC, Dept Radiol & Nucl Med, Rotterdam, Netherlands
[2] Otto von Guericke Univ, Dept Neurol, Magdeburg, Germany
[3] Otto von Guericke Univ, Fac Comp Sci, Magdeburg, Germany
[4] Otto von Guericke Univ, Dept Neuroradiol, Magdeburg, Germany
[5] Erasmus MC, Dept Epidemiol, Rotterdam, Netherlands
[6] Delft Univ Technol, Fac Appl Sci, Dept Imaging Phys, Delft, Netherlands
[7] Ctr Behav Brain Sci CBBS, Magdeburg, Germany
[8] Univ Copenhagen, Dept Comp Sci, Copenhagen, Denmark
来源
OR 2.0 CONTEXT-AWARE OPERATING THEATERS AND MACHINE LEARNING IN CLINICAL NEUROIMAGING | 2019年 / 11796卷
关键词
Perivascular spaces; Deep learning; Clinical MRI;
D O I
10.1007/978-3-030-32695-1_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Enlarged perivascular spaces (PVS) are structural brain changes visible in MRI, and are a marker of cerebral small vessel disease. Most studies use time-consuming and subjective visual scoring to assess these structures. Recently, automated methods to quantify enlarged perivascular spaces have been proposed. Most of these methods have been evaluated only in high resolution scans acquired in controlled research settings. We evaluate and compare two recently published automated methods for the quantification of enlarged perivascular spaces in 76 clinical scans acquired from 9 different scanners. Both methods are neural networks trained on high resolution research scans and are applied without fine-tuning the networks' parameters. By adapting the preprocessing of clinical scans, regions of interest similar to those computed from research scans can be processed. The first method estimates only the number of PVS, while the second method estimates simultaneously also a high resolution attention map that can be used to detect and segment PVS. The Pearson correlations between visual and automated scores of enlarged perivascular spaces were higher with the second method. With this method, in the centrum semiovale, the correlation was similar to theinter-rater agreement, and also similar to the performance in high resolution research scans. Results were slightly lower than the inter-rater agreement for the hippocampi, and noticeably lower in the basal ganglia. By computing attention maps, we show that the neural networks focus on the enlarged perivascular spaces. Assessing the burden of said structures in the centrum semiovale with the automated scores reached a satisfying performance, could be implemented in the clinic and, e.g., help predict the bleeding risk related to cerebral amyloid angiopathy.
引用
收藏
页码:103 / 111
页数:9
相关论文
共 13 条
  • [1] Rating Method for Dilated Virchow-Robin Spaces on Magnetic Resonance Imaging
    Adams, Hieab H. H.
    Cavalieri, Margherita
    Verhaaren, Benjamin F. J.
    Bos, Daniel
    van der Lugt, Aad
    Enzinger, Christian
    Vernooij, Meike W.
    Schmidt, Reinhold
    Ikram, M. Arfan
    [J]. STROKE, 2013, 44 (06) : 1732 - +
  • [2] MR Imaging-based Multimodal Autoidentification of Perivascular Spaces (mMAPS): Automated Morphologic Segmentation of Enlarged Perivascular Spaces at Clinical Field Strength
    Boespflug, Erin L.
    Schwartz, Daniel L.
    Lahna, David
    Pollock, Jeffrey
    Iliff, Jeffrey J.
    Kaye, Jeffrey A.
    Rooney, William
    Silbert, Lisa C.
    [J]. RADIOLOGY, 2018, 286 (02) : 632 - 642
  • [3] MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy
    Charidimou, Andreas
    Boulouis, Gregoire
    Pasi, Marco
    Auriel, Eitan
    van Etten, Ellis S.
    Haley, Kellen
    Ayres, Alison
    Schwab, Kristin M.
    Martinez-Ramirez, Sergi
    Goldstein, Joshua N.
    Rosand, Jonathan
    Viswanathan, Anand
    Greenberg, Steven M.
    Gurol, M. Edip
    [J]. NEUROLOGY, 2017, 88 (12) : 1157 - 1164
  • [4] Dubost F., 2019, ARXIV190601891
  • [5] Enlarged perivascular spaces in brain MRI: Automated quantification in four regions
    Dubost, Florian
    Yilmaz, Pinar
    Adams, Hieab
    Bortsova, Gerda
    Ikram, M. Arfan
    Niessen, Wiro
    Vernooij, Meike
    de Bruijne, Marleen
    [J]. NEUROIMAGE, 2019, 185 : 534 - 544
  • [6] 3D regression neural network for the quantification of enlarged perivascular spaces in brain MRI
    Dubost, Florian
    Adams, Hieab
    Bortsova, Gerda
    Ikram, M. Arfan
    Niessen, Wiro
    Vernooij, Meike
    de Bruijne, Marleen
    [J]. MEDICAL IMAGE ANALYSIS, 2019, 51 : 89 - 100
  • [7] The Rotterdam Study: 2018 update on objectives, design and main results
    Ikram, M. Arfan
    Brusselle, Guy G. O.
    Murad, Sarwa Darwish
    van Duijn, Cornelia M.
    Franco, Oscar H.
    Goedegebure, Andr
    Klaver, Caroline C. W.
    Nijsten, Tamar E. C.
    Peeters, Robin P.
    Stricker, Bruno H.
    Tiemeier, Henning
    Uitterlinden, Andre G.
    Vernooij, Meike W.
    Hofman, Albert
    [J]. EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2017, 32 (09) : 807 - 850
  • [8] Cerebral Perivascular Spaces Visible on Magnetic Resonance Imaging: Development of a Qualitative Rating Scale and its Observer Reliability
    Potter, Gillian M.
    Chappell, Francesca M.
    Morris, Zoe
    Wardlaw, Joanna M.
    [J]. CEREBROVASCULAR DISEASES, 2015, 39 (3-4) : 224 - 231
  • [9] Advances in functional and structural MR image analysis and implementation as FSL
    Smith, SM
    Jenkinson, M
    Woolrich, MW
    Beckmann, CF
    Behrens, TEJ
    Johansen-Berg, H
    Bannister, PR
    De Luca, M
    Drobnjak, I
    Flitney, DE
    Niazy, RK
    Saunders, J
    Vickers, J
    Zhang, YY
    De Stefano, N
    Brady, JM
    Matthews, PM
    [J]. NEUROIMAGE, 2004, 23 : S208 - S219
  • [10] Sudre C.H., 2018, MIDL 2019