Effects of a semiconductor matrix on the band anticrossing in dilute group II-VI oxides

被引:17
|
作者
Welna, M. [1 ,2 ]
Kudrawiec, R. [1 ]
Nabetani, Y. [3 ]
Tanaka, T. [4 ,5 ]
Jaquez, M. [2 ,6 ]
Dubon, O. D. [2 ,7 ]
Yu, K. M. [2 ,8 ]
Walukiewicz, W. [2 ]
机构
[1] Wroclaw Univ Technol, Dept Expt Phys, PL-50370 Wroclaw, Poland
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Yamanashi, Dept Elect Engn, Kofu, Yamanashi 4008511, Japan
[4] Saga Univ, Dept Elect & Elect Engn, Saga 8408502, Japan
[5] Japan Sci & Technol Agcy JST, PRESTO, Kawaguchi, Saitama 3320012, Japan
[6] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[8] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China
关键词
II-VI semiconductors; band gap; highly mismatched alloy; intermediate band gap; OPTICAL-PROPERTIES; COMPOSITION DEPENDENCE; ENERGY; GAP;
D O I
10.1088/0268-1242/30/8/085018
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The effect of a semiconductor matrix on the band anticrossing interaction is studied for four different dilute-oxide material systems: ZnSO, ZnSeO, ZnTeO, and ZnCdTeO. The choice of host material allows for independent control of the energy separation between the conduction band edge and the O energy level as well as the coupling parameter. The transition energies measured by photoreflectance and optical absorption are well explained by the band anticrossing model with the coupling parameter increasing from 1.35 eV for ZnSO to 2.8 eV for ZnTeO and showing approximately linear dependence on the electronegativity difference between O and the host anion.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Defects in wide band gap II-VI crystals
    Neumark, GF
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 1997, 21 (01) : 1 - 46
  • [12] Design of cadmium-free colloidal II-VI semiconductor quantum dots exhibiting RGB emission
    Asano, Hiroshi
    Omata, Takahisa
    AIP ADVANCES, 2017, 7 (04):
  • [13] Theory of band gap bowing of disordered substitutional II-VI and III-V semiconductor alloys
    Mourad, D.
    Czycholl, G.
    EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (05)
  • [14] Revised ab initio natural band offsets of all group IV, II-VI, and III-V semiconductors
    Li, Yong-Hua
    Walsh, Aron
    Chen, Shiyou
    Yin, Wan-Jian
    Yang, Ji-Hui
    Li, Jingbo
    Da Silva, Juarez L. F.
    Gong, X. G.
    Wei, Su-Huai
    APPLIED PHYSICS LETTERS, 2009, 94 (21)
  • [15] Physical and chemical cross analyses of II-VI semiconductor nanomaterials
    Dalmasso, S.
    Arl, D.
    Fregnaux, M.
    Gaumet, J. -J.
    Zhang, Y.
    Laurenti, J. -P.
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 7 NO 6, 2010, 7 (06): : 1513 - 1516
  • [16] Formation and transformation of II-VI semiconductor nanoparticles by laser radiation
    Savchuk, A. I.
    Fediv, V. I.
    Ivanchak, S. A.
    Makoviy, V. V.
    Smolinsky, M. M.
    Savchuk, O. A.
    Perrone, A.
    Cultrera, L.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2010, 12 (03): : 561 - 564
  • [17] A consolidated account of electrochemical determination of band structure parameters in II-VI semiconductor quantum dots: a tutorial review
    Ingole, Pravin Popinand
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (09) : 4695 - 4716
  • [18] Force field potentials for the vibrational properties of II-VI semiconductor nanostructures
    Han, Peng
    Bester, Gabriel
    PHYSICAL REVIEW B, 2017, 96 (19)
  • [19] Two-photon spectroscopy and microscopy of II-VI semiconductor nanocrystals
    Blanton, SA
    Hines, MA
    Schmidt, ME
    GuyotSionnest, P
    JOURNAL OF LUMINESCENCE, 1996, 70 : 253 - 268
  • [20] Discontinuous Growth of II-VI Semiconductor Nanocrystals from Different Materials
    Zanella, Marco
    Abbasi, Azhar Z.
    Schaper, Andreas K.
    Parak, Wolfgang J.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (14) : 6205 - 6215