Effects of a semiconductor matrix on the band anticrossing in dilute group II-VI oxides

被引:17
|
作者
Welna, M. [1 ,2 ]
Kudrawiec, R. [1 ]
Nabetani, Y. [3 ]
Tanaka, T. [4 ,5 ]
Jaquez, M. [2 ,6 ]
Dubon, O. D. [2 ,7 ]
Yu, K. M. [2 ,8 ]
Walukiewicz, W. [2 ]
机构
[1] Wroclaw Univ Technol, Dept Expt Phys, PL-50370 Wroclaw, Poland
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Yamanashi, Dept Elect Engn, Kofu, Yamanashi 4008511, Japan
[4] Saga Univ, Dept Elect & Elect Engn, Saga 8408502, Japan
[5] Japan Sci & Technol Agcy JST, PRESTO, Kawaguchi, Saitama 3320012, Japan
[6] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[8] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China
关键词
II-VI semiconductors; band gap; highly mismatched alloy; intermediate band gap; OPTICAL-PROPERTIES; COMPOSITION DEPENDENCE; ENERGY; GAP;
D O I
10.1088/0268-1242/30/8/085018
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The effect of a semiconductor matrix on the band anticrossing interaction is studied for four different dilute-oxide material systems: ZnSO, ZnSeO, ZnTeO, and ZnCdTeO. The choice of host material allows for independent control of the energy separation between the conduction band edge and the O energy level as well as the coupling parameter. The transition energies measured by photoreflectance and optical absorption are well explained by the band anticrossing model with the coupling parameter increasing from 1.35 eV for ZnSO to 2.8 eV for ZnTeO and showing approximately linear dependence on the electronegativity difference between O and the host anion.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Coupled electromechanical effects in II-VI group finite length semiconductor nanowires
    Patil, Sunil R.
    Melnik, Roderick V. N.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (14)
  • [2] Ab initio study of group II-VI semiconductor nanocrystals
    Vasiliev, Igor
    PHYSICAL CHEMISTRY OF INTERFACES AND NANOMATERIALS IX, 2010, 7758
  • [3] Luminescence of II-VI semiconductor nanoparticles
    School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur
    CG
    492010, India
    不详
    CG
    491001, India
    不详
    CG
    492101, India
    Solid State Phenomena, (1-65): : 1 - 65
  • [4] Temperature effects on the absorption properties in II-VI semiconductor core-shell nanocrystals
    Maria de la Cruz, Rosa
    Kanyinda-Malu, Clement
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2012, 44 (7-8) : 1250 - 1255
  • [5] Optical properties of II-VI semiconductor nanoparticles
    Neuendorf, R
    Brysch, A
    Bour, G
    Kreibig, U
    CONTROLLING AND USING LIGHT IN NANOMETRIC DOMAINS, 2001, 4456 : 39 - 47
  • [6] Emerging II-VI wide bandgap semiconductor device technologies
    Kuddus, Abdul
    Mostaque, Shaikh Khaled
    Mouri, Shinichiro
    Hossain, Jaker
    PHYSICA SCRIPTA, 2024, 99 (02)
  • [7] Insights into the Oxidation State of Cu Dopants in II-VI Semiconductor Nanocrystals
    Mondal, Payel
    Viswanatha, Ranjani
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (08) : 1952 - 1961
  • [8] Magnetic properties of doped II-VI semiconductor nanocrystals
    Sarma, DD
    Viswanatha, R
    Sapra, S
    Prakash, A
    García-Hernández, M
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2005, 5 (09) : 1503 - 1508
  • [9] Taming excitons in II-VI semiconductor nanowires and nanobelts
    Xu, Xinlong
    Zhang, Qing
    Zhang, Jun
    Zhou, Yixuan
    Xiong, Qihua
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (39)
  • [10] Size effect on the bandgap of II-VI semiconductor nanocrystals
    Yang, C. C.
    Jiang, Q.
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2006, 131 (1-3): : 191 - 194