UNIFORM RECTIFIABILITY FROM CARLESON MEASURE ESTIMATES AND ε-APPROXIMABILITY OF BOUNDED HARMONIC FUNCTIONS

被引:31
作者
Garnett, John [1 ]
Mourgoglou, Mihalis [2 ,3 ,4 ]
Tolsa, Xavier [5 ,6 ,7 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
[2] Basque Ctr Appl Math, Bilbao, Spain
[3] Univ Basque Country, Dept Matemat, Bilbao, Spain
[4] Basque Fdn Sci, Ikerbasque, Bilbao, Spain
[5] Passeig Lluis Co, Catalan Inst Res & Adv Studies, Barcelona, Catalonia, Spain
[6] Univ Autonoma Barcelona, Dept Matemat, Bellaterra, Barcelona, Spain
[7] Univ Autonoma Barcelona, Barcelona Grad Sch Math, Bellaterra, Barcelona, Spain
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
CALDERON-ZYGMUND OPERATORS; POISSON KERNELS; RIESZ TRANSFORM; APPROXIMATION; HYPERSURFACES; PROPERTY;
D O I
10.1215/00127094-2017-0057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega subset of Rn+1, n >= 1, be a corkscrew domain with Ahlfors-David regular boundary. In this article we prove that partial derivative Omega is uniformly n-rectifiable if every bounded harmonic function on Omega is epsilon-approximable or if every bounded harmonic function on Omega satisfies a suitable square-function Carleson measure estimate. In particular, this applies to the case when Omega = Rn+1 \ E and E is Ahlfors-David regular. Our results establish a conjecture posed by Hofmann, Martell, and Mayboroda, in which they proved the converse statements. Here we also obtain two additional criteria for uniform rectifiability, one in terms of the so-called S < N estimates and another in terms of a suitable corona decomposition involving harmonic measure.
引用
收藏
页码:1473 / 1524
页数:52
相关论文
共 43 条
  • [1] Doubling conditions for harmonic measure in John domains
    Aikawa, Hiroaki
    Hirata, Kentaro
    [J]. ANNALES DE L INSTITUT FOURIER, 2008, 58 (02) : 429 - 445
  • [2] ARMITAGE DH, 2001, SPRINGER MG MATH, P1, DOI 10.1007/978-1-4471-0233-5
  • [3] AZZAM J., ARXIV150506088V3MATH
  • [4] AZZAM J., ARXIV161202650V3MATH
  • [5] Mutual Absolute Continuity of Interior and Exterior Harmonic Measure Implies Rectifiability
    Azzam, Jonas
    Mourgoglou, Mihalis
    Tolsa, Xavier
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2017, 70 (11) : 2121 - 2163
  • [6] A new characterization of chord-arc domains
    Azzam, Jonas
    Hofmann, Steve
    Maria Martell, Jose
    Nystrom, Kaj
    Toro, Tatiana
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (04) : 967 - 981
  • [7] Rectifiability of harmonic measure
    Azzam, Jonas
    Hofmann, Steve
    Martell, Jose Maria
    Mayboroda, Svitlana
    Mourgoglou, Mihalis
    Tolsa, Xavier
    Volberg, Alexander
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (03) : 703 - 728
  • [8] HARMONIC MEASURE AND ARCLENGTH
    BISHOP, CJ
    JONES, PW
    [J]. ANNALS OF MATHEMATICS, 1990, 132 (03) : 511 - 547
  • [9] Harmonic measure and approximation of uniformly rectifiable sets
    Bortz, Simon
    Hofmann, Steve
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2017, 33 (01) : 351 - 373
  • [10] Dahlberg B.E.J., 1980, Ann. Inst. Fourier, V30, P97