The role of surface chemistry in serum protein corona-mediated cellular delivery and gene silencing with lipid nanoparticles

被引:116
作者
Chen, Dongyu [1 ]
Ganesh, Shanthi [2 ]
Wang, Weimin [2 ]
Amiji, Mansoor [1 ]
机构
[1] Northeastern Univ, Sch Pharm, Dept Pharmaceut Sci, Boston, MA 02115 USA
[2] Dicerna Pharmaceut Inc, Cambridge, MA 02140 USA
关键词
BIOLOGICAL IDENTITY; RNA INTERFERENCE; UPTAKE MECHANISM; SIRNA DELIVERY; TRANSPORT; RECEPTOR; THERAPEUTICS; PEGYLATION; PROTEOMICS; PEPTIDES;
D O I
10.1039/c8nr09855g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Delivery of genetic medicines, such as small interfering RNA (siRNA), by lipid nanoparticles (LNPs) is a promising approach towards the treatment of diseases, such as solid tumors. However, in vitro and in vivo nanoparticle delivery efficiency is influenced by the formation of a protein corona in biological media. In this study, we have formulated four types of EnCore nanoparticles (F1 to F4) with a similar composition, but different polyethylene glycol (PEG) conjugated lipid chain lengths (carbon 14 vs. carbon 18) and molar ratios (6% vs. 3%). These LNPs showed dramatic differences in cellular delivery and transfection in hepatocellular carcinoma (HepG2) cells in the absence and presence of fetal bovine serum (FBS). The presence of proteins inhibited the cellular uptake of C18 (3%) nanoparticles, while it facilitated the cellular uptake of C14 nanoparticles. Among the adsorbed proteins from FBS, apolipoprotein E, but not apolipoprotein A1, affected the cellular uptake of the carbon 14 LNPs. Additionally, surface PEG was one of the determinants for the protein corona amount and composition. Finally, different serum to LNP volume ratios resulted in different protein enrichment patterns. Overall, the results showed a correlation between surface chemistry of LNPs and the protein corona composition suggesting a potential use for targeted delivery.
引用
收藏
页码:8760 / 8775
页数:16
相关论文
共 57 条
[1]   Targeted Delivery of RNAi Therapeutics With Endogenous and Exogenous Ligand-Based Mechanisms [J].
Akinc, Akin ;
Querbes, William ;
De, Soma ;
Qin, June ;
Frank-Kamenetsky, Maria ;
Jayaprakash, K. Narayanannair ;
Jayaraman, Muthusamy ;
Rajeev, Kallanthottathil G. ;
Cantley, William L. ;
Dorkin, J. Robert ;
Butler, James S. ;
Qin, LiuLiang ;
Racie, Timothy ;
Sprague, Andrew ;
Fava, Eugenio ;
Zeigerer, Anja ;
Hope, Michael J. ;
Zerial, Marino ;
Sah, Dinah W. Y. ;
Fitzgerald, Kevin ;
Tracy, Mark A. ;
Manoharan, Muthiah ;
Koteliansky, Victor ;
de Fougerolles, Antonin ;
Maier, Martin A. .
MOLECULAR THERAPY, 2010, 18 (07) :1357-1364
[2]   In vivo protein corona patterns of lipid nanoparticles [J].
Amici, A. ;
Caracciolo, G. ;
Digiacomo, L. ;
Gambini, V. ;
Marchini, C. ;
Tilio, M. ;
Capriotti, A. L. ;
Colapicchioni, V. ;
Matassa, R. ;
Familiari, G. ;
Palchetti, S. ;
Pozzi, D. ;
Mahmoudi, M. ;
Lagana, A. .
RSC ADVANCES, 2017, 7 (02) :1137-1145
[3]   Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics [J].
Bertrand, Nicolas ;
Grenier, Philippe ;
Mahmoudi, Morteza ;
Lima, Eliana M. ;
Appel, Eric A. ;
Dormont, Flavio ;
Lim, Jong-Min ;
Karnik, Rohit ;
Langer, Robert ;
Farokhzad, Omid C. .
NATURE COMMUNICATIONS, 2017, 8
[4]   Principles of nanoparticle design for overcoming biological barriers to drug delivery [J].
Blanco, Elvin ;
Shen, Haifa ;
Ferrari, Mauro .
NATURE BIOTECHNOLOGY, 2015, 33 (09) :941-951
[5]   Extrahepatic High-Density Lipoprotein Receptor SR-BI and ApoA-I Protect Against Deep Vein Thrombosis in Mice [J].
Brill, Alexander ;
Yesilaltay, Ayce ;
De Meyer, Simon F. ;
Kisucka, Janka ;
Fuchs, Tobias A. ;
Kocher, Olivier ;
Krieger, Monty ;
Wagner, Denisa D. .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2012, 32 (08) :1841-U308
[6]   Lipid composition: a "key factor" for the rational manipulation of the liposome-protein corona by liposome design [J].
Caracciolo, G. ;
Pozzi, D. ;
Capriotti, A. L. ;
Cavaliere, C. ;
Piovesana, S. ;
Amenitsch, H. ;
Lagana, A. .
RSC ADVANCES, 2015, 5 (08) :5967-5975
[7]   Clinically approved liposomal nanomedicines: lessons learned from the biomolecular corona [J].
Caracciolo, Giulio .
NANOSCALE, 2018, 10 (09) :4167-4172
[8]   Selective Targeting Capability Acquired with a Protein Corona Adsorbed on the Surface of 1,2-Dioleoyl-3-trimethylammonium Propane/DNA Nanoparticles [J].
Caracciolo, Giulio ;
Cardarelli, Francesco ;
Pozzi, Daniela ;
Salomone, Fabrizio ;
Maccari, Giuseppe ;
Bardi, Giuseppe ;
Capriotti, Anna Laura ;
Cavaliere, Chiara ;
Papi, Massimiliano ;
Lagana, Aldo .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (24) :13171-13179
[9]   Hardening of the Nanoparticle-Protein Corona in Metal (Au, Ag) and Oxide (Fe3O4, CoO, and CeO2) Nanoparticles [J].
Casals, Eudald ;
Pfaller, Tobias ;
Duschl, Albert ;
Oostingh, Gertie J. ;
Puntes, Victor F. .
SMALL, 2011, 7 (24) :3479-3486
[10]   Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles [J].
Cedervall, Tommy ;
Lynch, Iseult ;
Lindman, Stina ;
Berggard, Tord ;
Thulin, Eva ;
Nilsson, Hanna ;
Dawson, Kenneth A. ;
Linse, Sara .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (07) :2050-2055