Segmentation of Subcutaneous Fat within Mouse Skin in 3D OCT Image Data using Random Forests

被引:0
作者
Kepp, Timo [1 ]
Droigk, Christine [1 ]
Casper, Malte [2 ,3 ]
Evers, Michael [2 ,3 ]
Salma, Nunciada [3 ]
Manstein, Dieter [3 ]
Handels, Heinz [1 ]
机构
[1] Univ Lubeck, Inst Med Informat, Lubeck, Germany
[2] Univ Lubeck, Inst Biomed Opt, Lubeck, Germany
[3] Massachusetts Gen Hosp, Cutaneous Biol Res Ctr, Boston, MA 02114 USA
来源
MEDICAL IMAGING 2018: IMAGE PROCESSING | 2018年 / 10574卷
关键词
optical coherence tomography; random forest classification; graph-based segmentation;
D O I
10.1117/12.2290085
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Cryolipolysis is a well-established cosmetic procedure for non-invasive local fat reduction. This technique selectively destroys subcutaneous fat cells using controlled cooling. Thickness measurements of subcutaneous fat were conducted using a mouse model. For detailed examination of mouse skin optical coherence tomography (OCT) was performed, which is a non-invasive imaging modality. Due to a high number of image slices manual delineation is not feasible. Therefore, automatic segmentation algorithms are required. In this work an algorithm for the automatic 3D segmentation of the subcutaneous fat layer is presented, which is based on a random forest classification followed by a graph-based refinement step. Our approach is able to accurately segment the subcutaneous fat layer with an overall average symmetric surface distance of 11.80 +/- 6.05 mu m and Dice coefficient of 0.921 +/- 0.045. Furthermore, it was shown that the graph-based refining step leads to increased accuracy and robustness of the segmentation results of the random forest classifier.
引用
收藏
页数:8
相关论文
共 14 条
  • [1] A combined machine-learning and graph-based framework for the segmentation of retinal surfaces in SD-OCT volumes
    Antony, Bhavna J.
    Abramoff, Michael D.
    Harper, Matthew M.
    Jeong, Woojin
    Sohn, Elliott H.
    Kwon, Young H.
    Kardon, Randy
    Garvin, Mona K.
    [J]. BIOMEDICAL OPTICS EXPRESS, 2013, 4 (12): : 2712 - 2728
  • [2] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [3] BRIEF: Computing a Local Binary Descriptor Very Fast
    Calonder, Michael
    Lepetit, Vincent
    Oezuysal, Mustafa
    Trzcinski, Tomasz
    Strecha, Christoph
    Fua, Pascal
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (07) : 1281 - 1298
  • [4] Dabov Kostadin, 2009, SPARS'09-Signal Processing with Adaptive Sparse Structured Representations
  • [5] Automated 3-D Intraretinal Layer Segmentation of Macular Spectral-Domain Optical Coherence Tomography Images
    Garvin, Mona Kathryn
    Abramoff, Michael David
    Wu, Xiaodong
    Russell, Stephen R.
    Burns, Trudy L.
    Sonka, Milan
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (09) : 1436 - 1447
  • [6] OPTICAL COHERENCE TOMOGRAPHY
    HUANG, D
    SWANSON, EA
    LIN, CP
    SCHUMAN, JS
    STINSON, WG
    CHANG, W
    HEE, MR
    FLOTTE, T
    GREGORY, K
    PULIAFITO, CA
    FUJIMOTO, JG
    [J]. SCIENCE, 1991, 254 (5035) : 1178 - 1181
  • [7] Klein K. B., 2017, LASERS SURG MED
  • [8] Retinal layer segmentation of macular OCT images using boundary classification
    Lang, Andrew
    Carass, Aaron
    Hauser, Matthew
    Sotirchos, Elias S.
    Calabresi, Peter A.
    Ying, Howard S.
    Prince, Jerry L.
    [J]. BIOMEDICAL OPTICS EXPRESS, 2013, 4 (07): : 1133 - 1152
  • [9] Optimal surface segmentation in volumetric images - A graph-theoretic approach
    Li, K
    Wu, XD
    Chen, DZ
    Sonka, M
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (01) : 119 - 134
  • [10] ISLES 2015-A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI
    Maier, Oskar
    Menze, Bjoern H.
    von der Gablentz, Janina
    Hani, Levin
    Heinrich, Mattias P.
    Liebrand, Matthias
    Winzeck, Stefan
    Basit, Abdul
    Bentley, Paul
    Chen, Liang
    Christiaens, Daan
    Dutil, Francis
    Egger, Karl
    Feng, Chaolu
    Glocker, Ben
    Goetz, Michael
    Haeck, Tom
    Halme, Hanna-Leena
    Havaei, Mohammad
    Iftekharuddin, Khan M.
    Jodoin, Pierre-Marc
    Kamnitsas, Konstantinos
    Kellner, Elias
    Korvenoja, Antti
    Larochelle, Hugo
    Ledig, Christian
    Lee, Jia-Hong
    Maes, Frederik
    Mahmood, Qaiser
    Maier-Hein, Klaus H.
    McKinley, Richard
    Muschelli, John
    Pal, Chris
    Pei, Linmin
    Rangarajan, Janaki Raman
    Reza, Syed M. S.
    Robben, David
    Rueckert, Daniel
    Salli, Eero
    Suetens, Paul
    Wang, Ching-Wei
    Wilms, Matthias
    Kirschke, Jan S.
    Kraemer, Ulrike M.
    Muente, Thomas F.
    Schramme, Peter
    Wiest, Roland
    Handels, Heinz
    Reyes, Mauricio
    [J]. MEDICAL IMAGE ANALYSIS, 2017, 35 : 250 - 269