Leveraging convolutional neural networks for semantic segmentation of global floods with PlanetScope imagery

被引:3
作者
Leach, Nicholas R. [1 ]
Popien, Philip [1 ]
Goodman, Maxwell C. [1 ]
Tellman, Beth [1 ]
机构
[1] Cloud St, Brooklyn, NY 11205 USA
来源
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022) | 2022年
关键词
flood mapping; convolutional neural network; Random Forest; remote sensing; Sentinel-1; image segmentation; SURFACE-WATER;
D O I
10.1109/IGARSS46834.2022.9884272
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Constellations of small satellites are able to achieve the coverage, revisit rate, and spatial resolution needed to generate high resolution global maps of flood waters. The PlanetScope constellation achieves daily coverage at 3-4 m resolution; however, the limited spectral channels available as well as radiometric challenges inherent to large constellations of small satellites create a challenge to accurate global flood mapping. Here, we present a convolutional neural network (CNN) which combines PlanetScope imagery with information about multidecadal water dynamics from the Global Surface Water dataset to create a globally applicable water segmentation model. We also compare this model to locally-trained Random Forest models, which are commonly used for flood mapping. The CNN achieves a mean intersection over union score of 58.1% +/- 9.84% across 7 biomes when evaluated on flooded areas outside of permanent water bodies, and 70.3% +/- 11.6% when evaluated on all water pixels.
引用
收藏
页码:314 / 317
页数:4
相关论文
共 17 条
[1]  
Akiva P., 2021, 2021 IEEE WINT C APP
[2]  
[Anonymous], 2015, The Human Cost of Weather Related Disasters 19952015.
[3]  
[Anonymous], 2021, Planet Imagery Product Specifications, February 2021"
[4]  
Brakenridge G. R., 2010, DARTM FLOOD OBS
[5]  
Chakrabarti Subit, 2021, AGU FALL M 2021
[6]   Tracking Dynamic Northern Surface Water Changes with High-Frequency Planet CubeSat Imagery [J].
Cooley, Sarah W. ;
Smith, Laurence C. ;
Stepan, Leon ;
Mascaro, Joseph .
REMOTE SENSING, 2017, 9 (12)
[7]   An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm [J].
Dinerstein, Eric ;
Olson, David ;
Joshi, Anup ;
Vynne, Carly ;
Burgess, Neil D. ;
Wikramanayake, Eric ;
Hahn, Nathan ;
Palminteri, Suzanne ;
Hedao, Prashant ;
Noss, Reed ;
Hansen, Matt ;
Locke, Harvey ;
Ellis, Erle C. ;
Jones, Benjamin ;
Barber, Charles Victor ;
Hayes, Randy ;
Kormos, Cyril ;
Martin, Vance ;
Crist, Eileen ;
Sechrest, Wes ;
Price, Lori ;
Baillie, Jonathan E. M. ;
Weeden, Don ;
Suckling, Kieran ;
Davis, Crystal ;
Sizer, Nigel ;
Moore, Rebecca ;
Thau, David ;
Birch, Tanya ;
Potapov, Peter ;
Turubanova, Svetlana ;
Tyukavina, Alexandra ;
De Souza, Nadia ;
Pintea, Lilian ;
Brito, Jose C. ;
Llewellyn, Othman A. ;
Miller, Anthony G. ;
Patzelt, Annette ;
Ghazanfar, Shahina A. ;
Timberlake, Jonathan ;
Kloser, Heinz ;
Shennan-Farpon, Yara ;
Kindt, Roeland ;
Lilleso, Jens-Peter Barnekow ;
van Breugel, Paulo ;
Graudal, Lars ;
Voge, Maianna ;
Al-Shammari, Khalaf F. ;
Saleem, Muhammad .
BIOSCIENCE, 2017, 67 (06) :534-545
[8]   Water Bodies' Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band [J].
Du, Yun ;
Zhang, Yihang ;
Ling, Feng ;
Wang, Qunming ;
Li, Wenbo ;
Li, Xiaodong .
REMOTE SENSING, 2016, 8 (04)
[9]   Surface Water Mapping by Deep Learning [J].
Isikdogan, Furkan ;
Bovik, Alan C. ;
Passalacqua, Paola .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (11) :4909-4918
[10]   Normalization method for multi-sensor high spatial and temporal resolution satellite imagery with radiometric inconsistencies [J].
Leach, Nicholas ;
Coops, Nicholas C. ;
Obrknezev, Nikola .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 164