Dynamics of mechanical metamaterials: A framework to connect phonons, nonlinear periodic waves and solitons

被引:20
|
作者
Deng, Bolei [1 ]
Li, Jian [1 ,2 ]
Tournat, Vincent [3 ]
Purohit, Prashant K. [4 ]
Bertoldi, Katia [1 ]
机构
[1] Harvard Univ, Harvard John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Zhejiang Univ, Dept Engn Mech, Hangzhou 310027, Peoples R China
[3] Le Mans Univ, Lab Acoust Univ Mans LAUM, Inst Acoust, CNRS,Grad Sch IA GS,UMR 6613, Le Mans, France
[4] Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA
关键词
Flexible mechanical metamaterials; Nonlinear dynamics; Cnoidal waves;
D O I
10.1016/j.jmps.2020.104233
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Flexible mechanical metamaterials have been recently shown to support a rich nonlinear dynamic response. In particular, it has been demonstrated that the behavior of rotating-square architected systems in the continuum limit can be described by nonlinear Klein-Gordon equations. Here, we report on a general class of solutions of these nonlinear Klein-Gordon equations, namely cnoidal waves based on the Jacobi elliptic functions sn, cn and dn. By analyzing theoretically and numerically their validity and stability in the design- and wave-parameter space, we show that these cnoidal wave solutions extend from linear waves (or phonons) to solitons, while covering also a wide family of nonlinear periodic waves. The presented results thus reunite under the same framework different concepts of linear and non-linear waves and offer a fertile ground for extending the range of possible control strategies for nonlinear elastic waves and vibrations.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Nonlinear dynamics and solitons in the presence of rapidly varying periodic perturbations
    Kivshar, YS
    Spatschek, KH
    CHAOS SOLITONS & FRACTALS, 1995, 5 (12) : 2551 - 2569
  • [22] STABILITY OF SOLITONS AND NONLINEAR PERIODIC ORIENTATIONAL WAVES IN LIQUID-CRYSTALS
    ABDULLAEV, FK
    ABDUMALIKOV, AA
    TSOI, EN
    PHYSICS LETTERS A, 1993, 174 (5-6) : 403 - 406
  • [23] Nonlinear electrostatic periodic waves and solitons in an inhomogeneous magnetized dusty plasma
    Mahmood, S.
    Haque, Q.
    PHYSICS OF PLASMAS, 2017, 24 (09)
  • [24] Solitons and nonlinear periodic strain waves in rods, plates, and shells (A review)
    Erofeev, VI
    Klyueva, NV
    ACOUSTICAL PHYSICS, 2002, 48 (06) : 643 - 655
  • [25] Solitons and nonlinear periodic strain waves in rods, plates, and shells (a review)
    Erofeev, V.I.
    Klyueva, N.V.
    Akusticheskij Zhurnal, 2002, 48 (06): : 725 - 741
  • [26] EXACT AND APPROXIMATE NONLINEAR-WAVES GENERATED BY THE PERIODIC SUPERPOSITION OF SOLITONS
    BOYD, JP
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1989, 40 (06): : 940 - 944
  • [27] Nonlinear elastic vector solitons in hard-magnetic soft mechanical metamaterials
    Zhang, Quan
    Cherkasov, Andrei V.
    Xie, Chen
    Arora, Nitesh
    Rudykh, Stephan
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2023, 280
  • [28] Nonlinear Wave Dynamics of Origami-based Mechanical Metamaterials
    Yasuda, Hiromi
    Yang, Jinkyu
    PROCEEDINGS OF 2014 INTERNATIONAL SYMPOSIUM ON OPTOMECHATRONIC TECHNOLOGIES (ISOT), 2014, : 1 - 3
  • [29] Dissipative periodic waves, solitons, and breathers of the nonlinear Schrodinger equation with complex potentials
    Abdullaev, F. Kh.
    Konotop, V. V.
    Salerno, M.
    Yulin, A. V.
    PHYSICAL REVIEW E, 2010, 82 (05):
  • [30] Acoustic nonlinear periodic (cnoidal) waves and solitons in pair-ion plasmas
    Kaladze, T.
    Mahmood, S.
    Ur-Rehman, Hafeez
    PHYSICA SCRIPTA, 2012, 86 (03)