Experimental Characterization of Microfabricated Thermoelectric Energy Harvesters for Smart Sensor and Wearable Applications

被引:26
作者
Dunham, Marc T. [1 ,2 ]
Barako, Michael T. [1 ]
Cornett, Jane E. [3 ]
Gao, Yuan [4 ]
Haidar, Samer [3 ,4 ]
Sun, Nian [4 ]
Asheghi, Mehdi [1 ]
Chen, Baoxing [3 ]
Goodson, Kenneth E. [1 ]
机构
[1] Stanford Univ, Dept Mech Engn, 400 Escondido Mall, Stanford, CA 94305 USA
[2] Anal Devices Inc, 3550 N 1st St, San Jose, CA 95134 USA
[3] Anal Devices Inc, 804 Woburn St, Wilmington, MA 01887 USA
[4] Northeastern Univ, Dept Elect & Comp Engn, 360 Huntington Ave,409 Dana, Boston, MA 02115 USA
关键词
connected sensor power supplies; infrared microscopy; microfabricated thermoelectric generators; thermal energy harvesting; thermoelectric figure of merit; HEAT-RECOVERY; POWER; OPTIMIZATION; FABRICATION; TELLURIDE; GENERATOR;
D O I
10.1002/admt.201700383
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Microfabricated thermoelectric generators (mu TEGs) are excellent candidates for sustainable power delivery for the next generation of smart sensors and wearable devices through harvesting of waste heat. However, the assembly process and inherently small contact areas for thermal and electrical transport introduce losses which can significantly reduce the effective figure of merit ZT. Further, the form factor of mu TEGs makes these losses extremely challenging to quantify. The relative contributions of the thermoelectric film and interfaces greatly impact the choice of materials, device geometry, and maximum power point operation. A comprehensive study of mu TEG devices including microfabrication, detailed modeling and optimization, and electrical, structural, and thermal characterization of modules and their constituent films is presented. Using a combination of novel infrared microscopy and thin-film characterization techniques, the average thermoelectric material properties and the power output as a function of the true temperature difference across the device are isolated. Power outputs as high as 1 mW for a mu TEG with 13.8 mm(2) footprint and device T of 7.3 K are measured. An order of magnitude reduction in figure of merit for the devices (ZT approximate to 0.03) compared to the constituent thermoelectric films (zT approximate to 0.3), with implications for the selection of maximum power point operation, is demonstrated.
引用
收藏
页数:12
相关论文
共 37 条
[1]   Thermal Cycling, Mechanical Degradation, and the Effective Figure of Merit of a Thermoelectric Module [J].
Barako, M. T. ;
Park, W. ;
Marconnet, A. M. ;
Asheghi, M. ;
Goodson, K. E. .
JOURNAL OF ELECTRONIC MATERIALS, 2013, 42 (03) :372-381
[2]   Reactive Metal Bonding of Carbon Nanotube Arrays for Thermal Interface Applications [J].
Barako, Michael T. ;
Gao, Yuan ;
Won, Yoonjin ;
Marconnet, Amy M. ;
Asheghi, Mehdi ;
Goodson, Kenneth E. .
IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2014, 4 (12) :1906-1913
[3]  
Becker Thomas, 2009, IEEE Sensors Journal, V9, P1589, DOI 10.1109/JSEN.2009.2028775
[4]   New thermoelectric components using microsystem technologies [J].
Böttner, H ;
Nurnus, J ;
Gavrikov, A ;
Kühner, G ;
Jägle, M ;
Künzel, C ;
Eberhard, D ;
Plescher, G ;
Schubert, A ;
Schlereth, KH .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2004, 13 (03) :414-420
[5]   Fabrication and Characterization of Bi2Te3-Based Chip-Scale Thermoelectric Energy Harvesting Devices [J].
Cornett, Jane ;
Chen, Baoxing ;
Haidar, Samer ;
Berney, Helen ;
Mcguinness, Pat ;
Lane, Bill ;
Gao, Yuan ;
He, Yifan ;
Sun, Nian ;
Dunham, Marc ;
Asheghi, Mehdi ;
Goodson, Ken ;
Yuan, Yi ;
Najafi, Khalil .
JOURNAL OF ELECTRONIC MATERIALS, 2017, 46 (05) :2844-2846
[6]   Micro-thermoelectric cooler: interfacial effects on thermal and electrical transport [J].
da Silva, LW ;
Kaviany, M .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2004, 47 (10-11) :2417-2435
[7]  
DesBock H. P. J., 2008, 2008 11 IEEE INT C T, P1276
[8]  
Doms I., 2007, 2007 EUR C POW EL AP
[9]   Capacitive Power Management Circuit for Micropower Thermoelectric Generators With a 1.4 μA Controller [J].
Doms, Inge ;
Merken, Patrick ;
Van Hoof, Chris ;
Mertens, Robert P. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2009, 44 (10) :2824-2833
[10]   Power density optimization for micro thermoelectric generators [J].
Dunham, Marc T. ;
Barako, Michael T. ;
LeBlanc, Saniya ;
Asheghi, Mehdi ;
Chen, Baoxing ;
Goodson, Kenneth E. .
ENERGY, 2015, 93 :2006-2017