Optimization of CO2 Biofixation by Chlorella vulgaris Using a Tubular Photobioreactor

被引:21
作者
Hossain, S. Mohammad Z. [1 ]
Hossain, Mohammad M. [2 ]
Razzak, Shaikh A. [2 ]
机构
[1] Univ Bahrain, Dept Chem Engn, Bahrain Int Circuit, POB 32038, Zallaq, Bahrain
[2] King Fahd Univ Petr & Minerals, Dept Chem Engn, Acad Belt Rd, Dhahran 31261, Saudi Arabia
关键词
Biomass productivity; CO2; biofixation; Microalgae; Photobioreactors; Specific growth rate; PHOTOSYNTHETIC PIGMENT PRODUCTION; CHEMICAL-LOOPING COMBUSTION; CARBON-DIOXIDE FIXATION; SCENEDESMUS-OBLIQUUS; WASTE-WATER; SPECTRAL CONVERSION; BIOFUEL PRODUCTION; LIGHT-INTENSITY; LIPID SOURCE; MICROALGAE;
D O I
10.1002/ceat.201700210
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The effects of various CO2 concentrations in CO2 bioconversion by cultivation of microalga Chlorella vulgaris were investigated using a vertical tubular photobioreactor. The response surface technique with central composite design was applied to model the CO2 biofixation rate, the specific growth rate (SGR), and the biomass productivity of C.vulgaris as function of CO2 concentration and cultivation time. The developed nonlinear model was employed to determine the optimum CO2 concentration in an air-CO2 mixture and the cultivation time for maximum CO2 biofixation, SGR, and microalgae biomass productivity. In addition, a multiple responses optimization method was also applied to determine the maximum CO2 uptake rate, the SGR, and the biomass productivity, simultaneously. The predicted optimum values agreed well with the experimental data.
引用
收藏
页码:1313 / 1323
页数:11
相关论文
共 42 条
  • [1] Progress in Chemical-Looping Combustion and Reforming technologies
    Adanez, Juan
    Abad, Alberto
    Garcia-Labiano, Francisco
    Gayan, Pilar
    de Diego, Luis F.
    [J]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2012, 38 (02) : 215 - 282
  • [2] Optimization of CO2 bio-mitigation by Chlorella vulgaris
    Anjos, Mariana
    Fernandes, Bruno D.
    Vicente, Antonio A.
    Teixeira, Jose A.
    Dragone, Giuliano
    [J]. BIORESOURCE TECHNOLOGY, 2013, 139 : 149 - 154
  • [3] [Anonymous], 2011, COSTS CO2 CAPTURE T
  • [4] CO2 capture from the industry sector
    Bains, Praveen
    Psarras, Peter
    Wilcox, Jennifer
    [J]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2017, 63 : 146 - 172
  • [5] Progress in biodiesel processing
    Balat, Mustafa
    Balat, Havva
    [J]. APPLIED ENERGY, 2010, 87 (06) : 1815 - 1835
  • [6] Microalgal hydrogen production: prospects of an essential technology for a clean and sustainable energy economy
    Bayro-Kaiser, Vinzenz
    Nelson, Nathan
    [J]. PHOTOSYNTHESIS RESEARCH, 2017, 133 (1-3) : 49 - 62
  • [7] Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris
    Bhola, Virthie
    Desikan, Ramesh
    Santosh, Sheena Kumari
    Subburamu, Karthikeyan
    Sanniyasi, Elumalai
    Bux, Faizal
    [J]. JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2011, 111 (03) : 377 - 382
  • [8] Box G. E. P., 1978, HUNTER STAT EXPT
  • [9] Life cycle assessment of biodiesel production from microalgae in ponds
    Campbell, Peter K.
    Beer, Tom
    Batten, David
    [J]. BIORESOURCE TECHNOLOGY, 2011, 102 (01) : 50 - 56
  • [10] Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon
    Chang, Hai-Xing
    Huang, Yun
    Fu, Qian
    Liao, Qiang
    Zhu, Xun
    [J]. BIORESOURCE TECHNOLOGY, 2016, 206 : 231 - 238