Atmospheric Ozone and Methane in a Changing Climate

被引:40
作者
Isaksen, Ivar S. A. [1 ,2 ]
Berntsen, Terje K. [1 ,2 ]
Dalsoren, Stig B. [2 ]
Eleftheratos, Kostas [3 ]
Orsolini, Yvan [4 ]
Rognerud, Bjorg [1 ]
Stordal, Frode [1 ]
Sovde, Ole Amund [2 ]
Zerefos, Christos [5 ]
Holmes, Chris D. [6 ]
机构
[1] Univ Oslo, Dept Geosci, N-0315 Oslo, Norway
[2] CICERO, N-0318 Oslo, Norway
[3] Univ Athens, Dept Geol & Geoenvironm, Athens 15784, Greece
[4] NORWEGIAN Inst Air Res NILU, N-2027 Kjeller, Norway
[5] Acad Athens, Athens 10680, Greece
[6] Univ Calif Irvine, Irvine, CA 92697 USA
关键词
ozone; methane; atmospheric processes; chemistry; dynamics; Quasi Biennial Oscillation (QBO); permafrost; TROPOSPHERIC OZONE; TRAFFIC EMISSIONS; SURFACE OZONE; LAND-COVER; IMPACT; CARBON; CHEMISTRY; PERMAFROST; TRANSPORT; SULFATE;
D O I
10.3390/atmos5030518
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ozone and methane are chemically active climate-forcing agents affected by climate-chemistry interactions in the atmosphere. Key chemical reactions and processes affecting ozone and methane are presented. It is shown that climate-chemistry interactions have a significant impact on the two compounds. Ozone, which is a secondary compound in the atmosphere, produced and broken down mainly in the troposphere and stratosphre through chemical reactions involving atomic oxygen (O), NOx compounds (NO, NO2), CO, hydrogen radicals (OH, HO2), volatile organic compounds (VOC) and chlorine (Cl, ClO) and bromine (Br, BrO). Ozone is broken down through changes in the atmospheric distribution of the afore mentioned compounds. Methane is a primary compound emitted from different sources (wetlands, rice production, livestock, mining, oil and gas production and landfills). Methane is broken down by the hydroxyl radical (OH). OH is significantly affected by methane emissions, defined by the feedback factor, currently estimated to be in the range 1.3 to 1.5, and increasing with increasing methane emission. Ozone and methane changes are affected by NOx emissions. While ozone in general increase with increases in NOx emission, methane is reduced, due to increases in OH. Several processes where current and future changes have implications for climate-chemistry interactions are identified. It is also shown that climatic changes through dynamic processes could have significant impact on the atmospheric chemical distribution of ozone and methane, as we can see through the impact of Quasi Biennial Oscillation (QBO). Modeling studies indicate that increases in ozone could be more pronounced toward the end of this century. Thawing permafrost could lead to important positive feedbacks in the climate system. Large amounts of organic material are stored in the upper layers of the permafrost in the yedoma deposits in Siberia, where 2 to 5% of the deposits could be organic material. During thawing of permafrost, parts of the organic material that is deposited could be converted to methane. Furthermore, methane stored in deposits under shallow waters in the Arctic have the potential to be released in a future warmer climate with enhanced climate impact on methane, ozone and stratospheric water vapor. Studies performed by several groups show that the transport sectors have the potential for significant impacts on climate-chemistry interactions. There are large uncertainties connected to ozone and methane changes from the transport sector, and to methane release and climate impact during permafrost thawing.
引用
收藏
页码:518 / 535
页数:18
相关论文
共 54 条
[1]   Impact of climate change on the future chemical composition of the global troposphere [J].
Brasseur, Guy P. ;
Schultz, Martin ;
Granier, Claire ;
Saunois, Marielle ;
Diehl, Thomas ;
Botzet, Michael ;
Roeckner, Erich ;
Walters, Stacy .
JOURNAL OF CLIMATE, 2006, 19 (16) :3932-3951
[2]   Relative influences of atmospheric chemistry and transport on Arctic ozone trends [J].
Chipperfield, MP ;
Jones, RL .
NATURE, 1999, 400 (6744) :551-554
[3]  
Ehhalt D, 2001, CLIMATE CHANGE 2001: THE SCIENTIFIC BASIS, P239
[4]   Ozone Variations Derived by a Chemical Transport Model [J].
Eleftheratos, K. ;
Isaksen, I. ;
Zerefos, C. ;
Nastos, P. ;
Tourpali, K. ;
Rognerud, B. .
WATER AIR AND SOIL POLLUTION, 2013, 224 (06)
[5]   A note on the comparison between total ozone from Oslo CTM2 and SBUV satellite data [J].
Eleftheratos, K. ;
Zerefos, C. S. ;
Gerasopoulos, E. ;
Isaksen, I. S. A. ;
Rognerud, B. ;
Dalsoren, S. ;
Varotsos, C. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2011, 32 (09) :2535-2545
[6]   Transport impacts on atmosphere and climate: Shipping [J].
Eyring, Veronika ;
Isaksen, Ivar S. A. ;
Berntsen, Terje ;
Collins, William J. ;
Corbett, James J. ;
Endresen, Oyvind ;
Grainger, Roy G. ;
Moldanova, Jana ;
Schlager, Hans ;
Stevenson, David S. .
ATMOSPHERIC ENVIRONMENT, 2010, 44 (37) :4735-4771
[7]  
Fiore AM, 2010, NATO SCI PEACE SEC B, P481, DOI 10.1109/CNSM.2010.5691279
[8]   Global air quality and climate [J].
Fiore, Arlene M. ;
Naik, Vaishali ;
Spracklen, Dominick V. ;
Steiner, Allison ;
Unger, Nadine ;
Prather, Michael ;
Bergmann, Dan ;
Cameron-Smith, Philip J. ;
Cionni, Irene ;
Collins, William J. ;
Dalsoren, Stig ;
Eyring, Veronika ;
Folberth, Gerd A. ;
Ginoux, Paul ;
Horowitz, Larry W. ;
Josse, Beatrice ;
Lamarque, Jean-Francois ;
MacKenzie, Ian A. ;
Nagashima, Tatsuya ;
O'Connor, Fiona M. ;
Righi, Mattia ;
Rumbold, Steven T. ;
Shindell, Drew T. ;
Skeie, Ragnhild B. ;
Sudo, Kengo ;
Szopa, Sophie ;
Takemura, Toshihiko ;
Zeng, Guang .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (19) :6663-6683
[9]   Atmospheric composition change: Ecosystems-Atmosphere interactions [J].
Fowler, D. ;
Pilegaard, K. ;
Sutton, M. A. ;
Ambus, P. ;
Raivonen, M. ;
Duyzer, J. ;
Simpson, D. ;
Fagerli, H. ;
Fuzzi, S. ;
Schjoerring, J. K. ;
Granier, C. ;
Neftel, A. ;
Isaksen, I. S. A. ;
Laj, P. ;
Maione, M. ;
Monks, P. S. ;
Burkhardt, J. ;
Daemmgen, U. ;
Neirynck, J. ;
Personne, E. ;
Wichink-Kruit, R. ;
Butterbach-Bahl, K. ;
Flechard, C. ;
Tuovinen, J. P. ;
Coyle, M. ;
Gerosa, G. ;
Loubet, B. ;
Altimir, N. ;
Gruenhage, L. ;
Ammann, C. ;
Cieslik, S. ;
Paoletti, E. ;
Mikkelsen, T. N. ;
Ro-Poulsen, H. ;
Cellier, P. ;
Cape, J. N. ;
Horvath, L. ;
Loreto, F. ;
Niinemets, Ue ;
Palmer, P. I. ;
Rinne, J. ;
Misztal, P. ;
Nemitz, E. ;
Nilsson, D. ;
Pryor, S. ;
Gallagher, M. W. ;
Vesala, T. ;
Skiba, U. ;
Brueggemann, N. ;
Zechmeister-Boltenstern, S. .
ATMOSPHERIC ENVIRONMENT, 2009, 43 (33) :5193-5267
[10]   Impact of future land use and land cover changes on atmospheric chemistry-climate interactions [J].
Ganzeveld, Laurens ;
Bouwman, Lex ;
Stehfest, Elke ;
van Vuuren, Detlef P. ;
Eickhout, Bas ;
Lelieveld, Jos .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115