Optimal Power Flow Using a Hybrid Optimization Algorithm of Particle Swarm Optimization and Gravitational Search Algorithm

被引:91
|
作者
Radosavljevic, Jordan [1 ]
Klimenta, Dardan [1 ]
Jevtic, Miroljub [1 ]
Arsic, Nebojsa [1 ]
机构
[1] Univ Pristina Kosovska Mitrovica, Fac Tech Sci, Kosovska Mitrovica 38220, Serbia
关键词
optimal power flow; particle swarm optimization; gravitational search algorithm; hybrid optimization algorithm; COST;
D O I
10.1080/15325008.2015.1061620
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents a hybrid algorithm based on the particle swarm optimization and gravitational search algorithms for solving optimal power flow in power systems. The proposed optimization technique takes advantages of both particle swarm optimization and gravitational search algorithms by combining the ability for social thinking in particle swarm optimization with the local search capability of the gravitational search algorithm. Performance of this approach for the optimal power flow problem is studied and evaluated on standard IEEE 30-bus and IEEE 118-bus test systems with different objectives that reflect fuel cost minimization, voltage profile improvement, voltage stability enhancement, power loss reduction, and fuel cost minimization with consideration of the valve point effect of generation units. Simulation results show that the hybrid particle swarm optimization-gravitational search algorithm provides an effective and robust high-quality solution of the optimal power flow problem.
引用
收藏
页码:1958 / 1970
页数:13
相关论文
共 50 条
  • [1] Binary optimization using hybrid particle swarm optimization and gravitational search algorithm
    Seyedali Mirjalili
    Gai-Ge Wang
    Leandro dos S. Coelho
    Neural Computing and Applications, 2014, 25 : 1423 - 1435
  • [2] Binary optimization using hybrid particle swarm optimization and gravitational search algorithm
    Mirjalili, Seyedali
    Wang, Gai-Ge
    Coelho, Leandro dos S.
    NEURAL COMPUTING & APPLICATIONS, 2014, 25 (06): : 1423 - 1435
  • [3] Optimal power flow using hybrid firefly and particle swarm optimization algorithm
    Khan, Abdullah
    Hizam, Hashim
    Wahab, Noor Izzri bin Abdul
    Othman, Mohammad Lutfi
    PLOS ONE, 2020, 15 (08):
  • [4] A novel hybrid gravitational search particle swarm optimization algorithm
    Khan, Talha Ali
    Ling, Sai Ho
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 102
  • [5] Optimal Power Flow Problem Using Particle Swarm Optimization Algorithm
    Patil, Monal
    Vyas, Deepak
    Lehru, Kinjal
    Jain, Ritu
    Mahajan, Vasundhara
    2019 IEEE 5TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2019,
  • [6] Optimal Power Flow Solution Using Particle Swarm Optimization Algorithm
    Turkay, Belgin Emre
    Cabadag, Rengin Idil
    2013 IEEE EUROCON, 2013, : 1412 - 1418
  • [7] An Improved Particle Swarm Optimization Algorithm for Optimal Power Flow
    Liu, Weibing
    Li, Min
    Wang, Xianjia
    2009 IEEE 6TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE, VOLS 1-4, 2009, : 447 - +
  • [8] Optimal Power Flow and Reactive Compensation Using a Particle Swarm Optimization Algorithm
    Elsheikh, Ahmed
    Helmy, Yahya
    Abouelseoud, Yasmine
    Elsherif, Ahmed
    JOURNAL OF ELECTRICAL SYSTEMS, 2014, 10 (01) : 63 - 77
  • [9] Optimal static state estimation using improved particle swarm optimization and gravitational search algorithm
    Mallick, Sourav
    Ghoshal, S. P.
    Acharjee, P.
    Thakur, S. S.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2013, 52 : 254 - 265
  • [10] Optimal sizing of CMOS analog circuits using gravitational search algorithm with particle swarm optimization
    Mallick, S.
    Kar, R.
    Mandal, D.
    Ghoshal, S. P.
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2017, 8 (01) : 309 - 331