Diagonal-kernel convolutional neural networks for image classification

被引:22
|
作者
Li, Guoqing [1 ]
Shen, Xuzhao [1 ]
Li, Jiaojie [1 ]
Wang, Jiuyang [1 ]
机构
[1] Southeast Univ, Natl ASIC Res Ctr, Sch Elect Sci & Engn, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolutional neural networks; Diagonal kernels; Parameter efficiency; Image classification;
D O I
10.1016/j.dsp.2020.102898
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The recognition performance of convolutional neural networks has surpassed that of humans in many computer vision areas. However, there is a large number of parameter redundancy in deep neural networks, especially the weights of the convolutional kernels. In this work, we propose a simple Diagonal-kernel, in which a standard square kernel is replaced by a diagonal kernel and an anti-diagonal kernel. Diagonal-kernels with fewer parameters can have similar or larger local receptive fields than square kernels. The performance of the Diagonal-kernel is firstly evaluated on two benchmark image classification datasets, CIFAR, and ImageNet. The experimental results indicate that the Diagonal-kernel can effectively reduce parameters and computational cost while maintaining high accuracy. Furthermore, compared with Vector-kernel, Diagonal-kernel has larger local receptive fields and is more efficient. Then, we test the Diagonal-kernel for fine-grained image and imbalanced image dataset. The results show that Diagonal-kernel has larger accuracy loss for fine-grained than the coarse-grain image, but the loss is tolerable. The imbalanced data does not influence the performance of the Diagonal-kernel. The proposed Diagonal-kernel is mainly for traditional convolution but not for depthwise convolution because the number of weights for deep convolution is very small. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Location Property of Convolutional Neural Networks for Image Classification
    Liang, Cong
    Zhang, Haixia
    Yuan, Dongfeng
    Zhang, Minggao
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (09) : 3831 - 3845
  • [22] Improving the Performance of Convolutional Neural Networks for Image Classification
    Giveki, Davar
    OPTICAL MEMORY AND NEURAL NETWORKS, 2021, 30 (01) : 51 - 66
  • [23] Revisiting Orthogonality Regularization: A Study for Convolutional Neural Networks in Image Classification
    Kim, Taehyeon
    Yun, Se-Young
    IEEE ACCESS, 2022, 10 : 69741 - 69749
  • [24] Multimodal Quanvolutional and Convolutional Neural Networks for Multi-Class Image Classification
    Gordienko, Yuri
    Trochun, Yevhenii
    Stirenko, Sergii
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (07)
  • [25] Evolving convolutional neural networks by symbiotic organisms search algorithm for image classification
    Miao, Fahui
    Yao, Li
    Zhao, Xiaojie
    APPLIED SOFT COMPUTING, 2021, 109
  • [26] Feature-Based Interpretation of Image Classification With the Use of Convolutional Neural Networks
    Wang, Dan
    Xia, Yuze
    Yu, Zhenhua
    IEEE ACCESS, 2024, 12 : 70377 - 70391
  • [27] Impact of fully connected layers on performance of convolutional neural networks for image classification
    Basha, S. H. Shabbeer
    Dubey, Shiv Ram
    Pulabaigari, Viswanath
    Mukherjee, Snehasis
    NEUROCOMPUTING, 2020, 378 (378) : 112 - 119
  • [28] Cascade wavelet transform based convolutional neural networks with application to image classification
    Sun, Jieqi
    Li, Yafeng
    Zhao, Qijun
    Guo, Ziyu
    Li, Ning
    Hai, Tao
    Zhang, Wenbo
    Chen, Dong
    NEUROCOMPUTING, 2022, 514 : 285 - 295
  • [29] Comparing Vision Transformers and Convolutional Neural Networks for Image Classification: A Literature Review
    Mauricio, Jose
    Domingues, Ines
    Bernardino, Jorge
    APPLIED SCIENCES-BASEL, 2023, 13 (09):
  • [30] An Image Classification Method Based on Semi-Supervised Classification Learning and Convolutional Neural Networks
    Shi, Liyan
    Chen, Hairui
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2023, 33 (03)