Discovery of coexisting Dirac and triply degenerate magnons in a three-dimensional antiferromagnet

被引:74
作者
Bao, Song [1 ,2 ]
Wang, Jinghui [1 ,2 ]
Wang, Wei [1 ,2 ]
Cai, Zhengwei [1 ,2 ]
Li, Shichao [1 ,2 ]
Ma, Zhen [1 ,2 ]
Wang, Di [1 ,2 ]
Ran, Kejing [1 ,2 ]
Dong, Zhao-Yang [1 ,2 ]
Abernathy, D. L. [3 ]
Yu, Shun-Li [1 ,2 ,4 ]
Wan, Xiangang [1 ,2 ,4 ]
Li, Jian-Xin [1 ,2 ,4 ]
Wen, Jinsheng [1 ,2 ,4 ]
机构
[1] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China
[3] Oak Ridge Natl Lab, Neutron Scattering Div, Oak Ridge, TN 37831 USA
[4] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
SEMIMETAL; CU3TEO6; LATTICE; STATES; ORDER;
D O I
10.1038/s41467-018-05054-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Topological magnons are emergent quantum spin excitations featured by magnon bands crossing linearly at the points dubbed nodes, analogous to fermions in topological electronic systems. Experimental realisation of topological magnons in three dimensions has not been reported so far. Here, by measuring spin excitations (magnons) of a three-dimensional antiferromagnet Cu3TeO6 with inelastic neutron scattering, we provide direct spectroscopic evidence for the coexistence of symmetry-protected Dirac and triply degenerate nodes, the latter involving three-component magnons beyond the Dirac-Weyl framework. Our theoretical calculations show that the observed topological magnon band structure can be well described by the linear-spin-wave theory based on a Hamiltonian dominated by the nearest-neighbour exchange interaction J(1). As such, we showcase Cu3TeO6 as an example system where Dirac and triply degenerate magnonic nodal excitations coexist, demonstrate an exotic topological state of matter, and provide a fresh ground to explore the topological properties in quantum materials.
引用
收藏
页数:7
相关论文
共 67 条
[1]   DAVE: A Comprehensive Software Suite for the Reduction, Visualization, and Analysis of Low Energy Neutron Spectroscopic Data [J].
Azuah, Richard Tumanjong ;
Kneller, Larry R. ;
Qiu, Yiming ;
Tregenna-Piggott, Philip L. W. ;
Brown, Craig M. ;
Copley, John R. D. ;
Dimeo, Robert M. .
JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 2009, 114 (06) :341-358
[2]   Antiferromagnetic spintronics [J].
Baltz, V. ;
Manchon, A. ;
Tsoi, M. ;
Moriyama, T. ;
Ono, T. ;
Tserkovnyak, Y. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[3]   Topological insulator laser: Experiments [J].
Bandres, Miguel A. ;
Wittek, Steffen ;
Harari, Gal ;
Parto, Midya ;
Ren, Jinhan ;
Segev, Mordechai ;
Christodoulides, Demetrios N. ;
Khajavikhan, Mercedeh .
SCIENCE, 2018, 359 (6381)
[4]   Colloquium: Topological band theory [J].
Bansil, A. ;
Lin, Hsin ;
Das, Tanmoy .
REVIEWS OF MODERN PHYSICS, 2016, 88 (02)
[5]   Topological quantum chemistry [J].
Bradlyn, Barry ;
Elcoro, L. ;
Cano, Jennifer ;
Vergniory, M. G. ;
Wang, Zhijun ;
Felser, C. ;
Aroyo, M. I. . ;
Bernevig, B. Andrei .
NATURE, 2017, 547 (7663) :298-305
[6]   Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals [J].
Bradlyn, Barry ;
Cano, Jennifer ;
Wang, Zhijun ;
Vergniory, M. G. ;
Felser, C. ;
Cava, R. J. ;
Bernevig, B. Andrei .
SCIENCE, 2016, 353 (6299)
[7]   Topological Magnon Bands in a Kagome Lattice Ferromagnet [J].
Chisnell, R. ;
Helton, J. S. ;
Freedman, D. E. ;
Singh, D. K. ;
Bewley, R. I. ;
Nocera, D. G. ;
Lee, Y. S. .
PHYSICAL REVIEW LETTERS, 2015, 115 (14)
[8]  
Chumak AV, 2015, NAT PHYS, V11, P453, DOI [10.1038/nphys3347, 10.1038/NPHYS3347]
[9]   Magnon Dirac materials [J].
Fransson, J. ;
Black-Schaffer, A. M. ;
Balatsky, A. V. .
PHYSICAL REVIEW B, 2016, 94 (07)
[10]   Topological insulator laser: Theory [J].
Harari, Gal ;
Bandres, Miguel A. ;
Lumer, Yaakov ;
Rechtsman, Mikael C. ;
Chong, Y. D. ;
Khajavikhan, Mercedeh ;
Christodoulides, Demetrios N. ;
Segev, Mordechai .
SCIENCE, 2018, 359 (6381)