Algebraic and geometric aspects of rational Γ-inner functions

被引:15
作者
Agler, Jim [1 ]
Lykova, Zinaida A. [2 ]
Young, N. J. [2 ,3 ]
机构
[1] Univ Calif San Diego, Dept Math, San Diego, CA 92103 USA
[2] Newcastle Univ, Sch Math Stat & Phys, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[3] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
Symmetrized bidisc; Inner function; Convexity; Extreme point; Distinguished boundary; EXTREMAL HOLOMORPHIC MAPS; SYMMETRIZED BIDISC; SYSTEMS; DOMAIN;
D O I
10.1016/j.aim.2017.12.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The set G =(def ){(z + w, zw) : vertical bar z vertical bar < 1, vertical bar w vertical bar < 1} subset of C-2 has intriguing complex-geometric properties; it has a 3-parameter group of automorphisms, its distinguished boundary is a ruled surface homeomorphic to the Mobius band and it has a special subvariety which is the only complex geodesic of G that is invariant under all automorphisms. We exploit the geometry of G to develop an explicit and detailed structure theory for the rational maps from the unit disc to the closure Gamma of G that map the boundary of the disc to the distinguished boundary of Gamma. (C) 2018 The Authors. Published by Elsevier Inc.
引用
收藏
页码:133 / 159
页数:27
相关论文
共 15 条
[1]   The hyperbolic geometry of the symmetrized bidisc [J].
Agler, J ;
Young, NJ .
JOURNAL OF GEOMETRIC ANALYSIS, 2004, 14 (03) :375-403
[2]   A commutant lifting theorem for a domain in C2 and spectral interpolation [J].
Agler, J ;
Young, NJ .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 161 (02) :452-477
[3]   3-Extremal Holomorphic Maps and the Symmetrized Bidisc [J].
Agler, Jim ;
Lykova, Zinaida A. ;
Young, N. J. .
JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (03) :2060-2102
[4]   Extremal holomorphic maps and the symmetrized bidisc [J].
Agler, Jim ;
Lykova, Zinaida A. ;
Young, N. J. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 106 :781-818
[5]   The Magic Functions and Automorphisms of a Domain [J].
Agler, Jim ;
Young, Nicholas John .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2008, 2 (03) :383-404
[6]  
[Anonymous], 2013, TEXTS APPL MATH
[7]  
Caratheodory C., 1911, Rend. Circ. Mat. Palermo (1884-1940), V32, P193, DOI [DOI 10.1007/BF03014795, 10.1007/BF03014795]
[8]  
Costara C., 2004, THESIS
[9]   ANALYSIS OF FEEDBACK-SYSTEMS WITH STRUCTURED UNCERTAINTIES [J].
DOYLE, J .
IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1982, 129 (06) :242-250
[10]  
Kosinski L, 2016, ANN SCUOLA NORM-SCI, V16, P159