Spatio-Temporal Modeling for Forecasting High-Risk Freshwater Cyanobacterial Harmful Algal Blooms in Florida

被引:13
|
作者
Myer, Mark H. [1 ]
Urquhart, Erin [2 ]
Schaeffer, Blake A. [3 ]
Johnston, John M. [4 ]
机构
[1] US EPA, Oak Ridge Inst Sci & Educ ORISE, Athens, GA USA
[2] US EPA, Oak Ridge Inst Sci & Educ ORISE, Res Triangle Pk, NC 27711 USA
[3] US EPA, Ctr Exposure Measurement & Modeling, Res Triangle Pk, NC 27711 USA
[4] US EPA, Ctr Exposure Measurement & Modeling, Athens, GA 30605 USA
关键词
harmful algal blooms; cyanobacteria; hierarchical Bayes; integrated nested Laplace approximation; remote sensing; predictive modeling; GLOBAL CHANGE; LAND-USE; TEMPERATURE; GROWTH; DOMINANCE; SCALE; LAKES; EUTROPHICATION; MICROCYSTINS; ASSOCIATIONS;
D O I
10.3389/fenvs.2020.581091
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Due to the occurrence of more frequent and widespread toxic cyanobacteria events, the ability to predict freshwater cyanobacteria harmful algal blooms (cyanoHAB) is of critical importance for the management of drinking and recreational waters. Lake system specific geographic variation of cyanoHABs has been reported, but regional and state level variation is infrequently examined. A spatio-temporal modeling approach can be applied, via the computationally efficient Integrated Nested Laplace Approximation (INLA), to high-risk cyanoHAB exceedance rates to explore spatio-temporal variations across statewide geographic scales. We explore the potential for using satellite-derived data and environmental determinants to develop a short-term forecasting tool for cyanobacteria presence at varying space-time domains for the state of Florida. Weekly cyanobacteria abundance data were obtained using Sentinel-3 Ocean Land Color Imagery (OLCI), for a period of May 2016-June 2019. Time and space varying covariates include surface water temperature, ambient temperature, precipitation, and lake geomorphology. The hierarchical Bayesian spatio-temporal modeling approach in R-INLA represents a potential forecasting tool useful for water managers and associated public health applications for predicting near future high-risk cyanoHAB occurrence given the spatio-temporal characteristics of these events in the recent past. This method is robust to missing data and unbalanced sampling between waterbodies, both common issues in water quality datasets.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Satellite retrievals of Karenia brevis harmful algal blooms in the West Florida shelf using neural networks and impacts of temporal variabilities
    El-Habashi, Ahmed
    Duran, Claudia M.
    Lovko, Vincent
    Tomlinson, Michelle C.
    Stumpf, Richard P.
    Ahmed, Sam
    JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
  • [42] Scalable data-driven modeling of spatio-temporal systems: Weather forecasting
    Moshki, Mohsen
    Kabiri, Peyman
    Mohebalhojeh, Alireza
    INTELLIGENT DATA ANALYSIS, 2017, 21 (03) : 577 - 595
  • [43] Spatio-temporal connectivity of the aquatic microbiome associated with cyanobacterial blooms along a Great Lake riverine-lacustrine continuum
    Crevecoeur, Sophie
    Edge, Thomas A.
    Watson, Linet Cynthia
    Watson, Susan B.
    Greer, Charles W.
    Ciborowski, Jan J. H.
    Diep, Ngan
    Dove, Alice
    Drouillard, Kenneth G.
    Frenken, Thijs
    McKay, Robert Michael
    Zastepa, Arthur
    Comte, Jerome
    FRONTIERS IN MICROBIOLOGY, 2023, 14
  • [44] SPATIO-TEMPORAL PRRS EPIDEMIC FORECASTING VIA FACTORIZED DEEP GENERATIVE MODELING
    Shamsabardeh, Mohammadsadegh
    Azari, Bahar
    Martinez-Lopez, Beatriz
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3978 - 3982
  • [45] Unified Spatio-Temporal Modeling for Traffic Forecasting using Graph Neural Network
    Roy, Amit
    Roy, Kashob Kumar
    Ali, Amin Ahsan
    Amin, M. Ashraful
    Rahman, A. K. M. Mahbubur
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [46] Spatio-temporal connectivity of a toxic cyanobacterial community and its associated microbiome along a freshwater-marine continuum
    Reignier, Oceane
    Bormans, Myriam
    Herve, Fabienne
    Robert, Elise
    Savar, Veronique
    Tanniou, Simon
    Amzil, Zouher
    Noel, Cyril
    Briand, Enora
    HARMFUL ALGAE, 2024, 134
  • [47] Spatio-temporal analysis of algal blooms in a tropical crater-lake from MODIS data (2003-2020)
    Cortes-Macias, Lizette Zareh
    Rivera-Caicedo, Juan Pablo
    Cepeda-Morales, Jushiro
    Hernandez-Almeida, Oscar U.
    Garcia-Morales, Ricardo
    Velarde-Alvarado, Pablo
    REVISTA DE TELEDETECCION, 2023, (62): : 39 - 55
  • [48] Eigen time series modeling: a breakthrough approach to spatio-temporal rainfall forecasting in basins
    Kübra Küllahcı
    Abdüsselam Altunkaynak
    Neural Computing and Applications, 2025, 37 (6) : 4471 - 4492
  • [49] Regional application of generalized regression neural network in ionosphere spatio-temporal modeling and forecasting
    Seyyed Reza Ghaffari-Razin
    Asghar Rastbood
    Navid Hooshangi
    GPS Solutions, 2023, 27
  • [50] Spatio-temporal forecasting modeling for running status of charging facilities in highway charging network
    Chen L.
    Han X.
    Ji Z.
    Wang Q.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2021, 41 (08): : 118 - 124