Blow-up for a degenerate and singular parabolic equation with a nonlocal source

被引:1
作者
Sukwong, Nitithorn [1 ]
Sawangtong, Panumart [1 ,3 ]
Koonprasert, Sanoe [1 ]
Sawangtong, Wannika [2 ,3 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Fac Sci Appl, Dept Math, Bangkok, Thailand
[2] Mahidol Univ, Dept Math, Fac Sci, Bangkok, Thailand
[3] Minist Educ, Commiss Higher Educ, PERDO, Ctr Excellence Math, Bangkok, Thailand
关键词
Degenerate and singular parabolic equations; Nonlocal source; Blow-up set; Uniform blow-up profile; GLOBAL EXISTENCE; BEHAVIOR; BOUNDARY;
D O I
10.1186/s13662-019-2219-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article studies the blow-up phenomenon for a degenerate and singular parabolic problem. Conditions for the local and global existence of solutions for the problem are given. In the case that blow-up occurs, the blow-up set for the problem is investigated. Finally, the asymptotic behaviour of the solution when time converges to the blow-up time is studied.
引用
收藏
页数:15
相关论文
共 17 条
[1]   LARGE TIME BEHAVIOR OF SOLUTIONS OF NEUMANN BOUNDARY-VALUE PROBLEM FOR THE POROUS-MEDIUM EQUATION [J].
ALIKAKOS, ND ;
ROSTAMIAN, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :749-785
[2]  
Anderson JR, 1997, MATH METHOD APPL SCI, V20, P1069, DOI 10.1002/(SICI)1099-1476(19970910)20:13<1069::AID-MMA867>3.0.CO
[3]  
2-Y
[4]  
Aronson D. G., 1981, TECHNICAL REPORT
[5]  
ARONSON DG, 1986, LECT NOTES MATH, V1224, P1
[6]  
Bebernes J, 1996, DIFFERENTIAL INTEGRA, V9, P655
[7]   The blow-up rate for a degenerate parabolic equation with a non-local source [J].
Deng, WB ;
Duan, ZW ;
Xie, CH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 264 (02) :577-597
[8]  
Dunford N., 1967, LINEAR OPERATORS II
[9]   BLOW-UP AT THE BOUNDARY FOR DEGENERATE SEMILINEAR PARABOLIC EQUATIONS [J].
FLOATER, MS .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 114 (01) :57-77
[10]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109