Construction of a quotient ring of Z2 F in which a binomial 1+w is invertible using small cancellation methods

被引:3
作者
Atkarskaya, A. [1 ]
Kanel-Belov, A. [1 ]
Plotkin, E. [1 ]
Rips, E. [2 ]
机构
[1] Bar Ilan Univ, Dept Math, IL-5290002 Ramat Gan, Israel
[2] Hebrew Univ Jerusalem, Dept Math, IL-9190401 Jerusalem, Israel
来源
GROUPS, ALGEBRAS AND IDENTITIES | 2019年 / 726卷
关键词
D O I
10.1090/conm/726/14605
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We apply small cancellation methods originating from group theory to investigate the structure of a quotient ring Z(2) F/I where Z(2) F is the group algebra of the free group F over the field Z(2), and the ideal I is generated by a single trinomial 1 + v + vw, where v is a complicated word depending on w. In Z(2) F/I we have (1 + w)-1 = v, so 1+ w becomes invertible. We construct an explicit linear basis of Z(2) F/I (thus showing that Z(2) F/I not equal 0). This is the first step in constructing rings with exotic properties.
引用
收藏
页码:1 / 76
页数:76
相关论文
共 9 条
[1]   DIAMOND LEMMA FOR RING THEORY [J].
BERGMAN, GM .
ADVANCES IN MATHEMATICS, 1978, 29 (02) :178-218
[2]  
Bridson M. R., 1999, FUNDAMENTAL PRINCIPL, V319
[3]  
COORNAERT M, 1990, LECT NOTES MATH, V1441, pR9
[4]  
Ghys E., 1990, Sur les groupes hyperboliques d'aprs Mikhael Gromov, V83, P27
[5]  
Gromov Mikhael, 1987, Essays in group theory, P75, DOI 10.1007/978-1-4613-9586-7_3
[6]  
Lang S., 2002, ALGEBRA
[7]  
Lyndon R. C., 1977, COMBINATORIAL GROUP, P89
[8]  
Olshanskii A. Y., 1991, MATH ITS APPL SOVIET, V70
[9]   CANONICAL REPRESENTATIVES AND EQUATIONS IN HYPERBOLIC GROUPS [J].
RIPS, E ;
SELA, Z .
INVENTIONES MATHEMATICAE, 1995, 120 (03) :489-512