Ensemble ecosystem modeling for predicting ecosystem response to predator reintroduction

被引:43
作者
Baker, Christopher M. [1 ,2 ,3 ]
Gordon, Ascelin [4 ]
Bode, Michael [1 ]
机构
[1] Univ Melbourne, Sch BioSci, Melbourne, Vic 3010, Australia
[2] Univ Queensland, Sch Biol Sci, Brisbane, Qld 4072, Australia
[3] CSIRO Ecosyst Sci, Ecosci Precinct, Dutton Pk, Brisbane, Qld 4102, Australia
[4] RMIT Univ, Sch Global Urban & Social Studies, GPO Box 2476, Melbourne, Vic 3001, Australia
基金
澳大利亚研究理事会;
关键词
dingo; Lotka-Volterra; rewilding; trophic cascade; wolf; ERADICATION; AUSTRALIA; RECOVERY; DINGOES;
D O I
10.1111/cobi.12798
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Introducing a new or extirpated species to an ecosystem is risky, and managers need quantitative methods that can predict the consequences for the recipient ecosystem. Proponents of keystone predator reintroductions commonly argue that the presence of the predator will restore ecosystem function, but this has not always been the case, and mathematical modeling has an important role to play in predicting how reintroductions will likely play out. We devised an ensemble modeling method that integrates species interaction networks and dynamic community simulations and used it to describe the range of plausible consequences of 2 keystone-predator reintroductions: wolves (Canis lupus) to Yellowstone National Park and dingoes (Canis dingo) to a national park in Australia. Although previous methods for predicting ecosystem responses to such interventions focused on predicting changes around a given equilibrium, we used Lotka-Volterra equations to predict changing abundances through time. We applied our method to interaction networks for wolves in Yellowstone National Park and for dingoes in Australia. Our model replicated the observed dynamics in Yellowstone National Park and produced a larger range of potential outcomes for the dingo network. However, we also found that changes in small vertebrates or invertebrates gave a good indication about the potential future state of the system. Our method allowed us to predict when the systems were far from equilibrium. Our results showed that the method can also be used to predict which species may increase or decrease following a reintroduction and can identify species that are important to monitor (i.e., species whose changes in abundance give extra insight into broad changes in the system). Ensemble ecosystem modeling can also be applied to assess the ecosystem-wide implications of other types of interventions including assisted migration, biocontrol, and invasive species eradication.
引用
收藏
页码:376 / 384
页数:9
相关论文
共 42 条
[1]   As clear as mud: A critical review of evidence for the ecological roles of Australian dingoes [J].
Allen, Benjamin L. ;
Fleming, Peter J. S. ;
Allen, Lee R. ;
Engeman, Richard M. ;
Ballard, Guy ;
Leung, Luke K. -P. .
BIOLOGICAL CONSERVATION, 2013, 159 :158-174
[2]  
Allen Benjamin L., 2011, Ecological Management & Restoration, V12, P26, DOI 10.1111/j.1442-8903.2011.00571.x
[3]   An ensemble method for identifying regulatory circuits with special reference to the qa gene cluster of Neurospora crassa [J].
Battogtokh, D ;
Asch, DK ;
Case, ME ;
Arnold, J ;
Schüttler, HB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (26) :16904-16909
[4]   Eradicating down the food chain: optimal multispecies eradication schedules for a commonly encountered invaded island ecosystem [J].
Bode, Michael ;
Baker, Christopher M. ;
Plein, Michaela .
JOURNAL OF APPLIED ECOLOGY, 2015, 52 (03) :571-579
[5]  
Buchanan RT, 2015, D ATTENBOROUGH BACKS
[6]   Recovery of large carnivores in Europe's modern human-dominated landscapes [J].
Chapron, Guillaume ;
Kaczensky, Petra ;
Linnell, John D. C. ;
von Arx, Manuela ;
Huber, Djuro ;
Andren, Henrik ;
Vicente Lopez-Bao, Jose ;
Adamec, Michal ;
Alvares, Francisco ;
Anders, Ole ;
Balciauskas, Linas ;
Balys, Vaidas ;
Bedo, Peter ;
Bego, Ferdinand ;
Carlos Blanco, Juan ;
Breitenmoser, Urs ;
Broseth, Henrik ;
Bufka, Ludek ;
Bunikyte, Raimonda ;
Ciucci, Paolo ;
Dutsov, Alexander ;
Engleder, Thomas ;
Fuxjaeger, Christian ;
Groff, Claudio ;
Holmala, Katja ;
Hoxha, Bledi ;
Iliopoulos, Yorgos ;
Ionescu, Ovidiu ;
Jeremic, Jasna ;
Jerina, Klemen ;
Kluth, Gesa ;
Knauer, Felix ;
Kojola, Ilpo ;
Kos, Ivan ;
Krofel, Miha ;
Kubala, Jakub ;
Kunovac, Sasa ;
Kusak, Josip ;
Kutal, Miroslav ;
Liberg, Olof ;
Majic, Aleksandra ;
Maennil, Peep ;
Manz, Ralph ;
Marboutin, Eric ;
Marucco, Francesca ;
Melovski, Dime ;
Mersini, Kujtim ;
Mertzanis, Yorgos ;
Myslajek, Robert W. ;
Nowak, Sabina .
SCIENCE, 2014, 346 (6216) :1517-1519
[7]   Qualitative predictions in model ecosystems [J].
Dambacher, JM ;
Li, HW ;
Rossignol, PA .
ECOLOGICAL MODELLING, 2003, 161 (1-2) :79-93
[8]   Don't judge species on their origins [J].
Davis, Mark ;
Chew, Matthew K. ;
Hobbs, Richard J. ;
Lugo, Ariel E. ;
Ewel, John J. ;
Vermeij, Geerat J. ;
Brown, James H. ;
Rosenzweig, Michael L. ;
Gardener, Mark R. ;
Carroll, Scott P. ;
Thompson, Ken ;
Pickett, Steward T. A. ;
Stromberg, Juliet C. ;
Del Tredici, Peter ;
Suding, Katharine N. ;
Ehrenfeld, Joan G. ;
Grime, J. Philip ;
Mascaro, Joseph ;
Briggs, John C. .
NATURE, 2011, 474 (7350) :153-154
[9]   Predicting Ecosystem Wide Impacts of Wallaby Management Using a Fuzzy Cognitive Map [J].
Dexter, Nick ;
Ramsey, David S. L. ;
MacGregor, Christopher ;
Lindenmayer, David .
ECOSYSTEMS, 2012, 15 (08) :1363-1379
[10]   Understanding and predicting ecological dynamics: Are major surprises inevitable? [J].
Doak, Daniel F. ;
Estes, James A. ;
Halpern, Benjamin S. ;
Jacob, Ute ;
Lindberg, David R. ;
Lovvorn, James ;
Monson, Daniel H. ;
Tinker, M. Timothy ;
Williams, Terrie M. ;
Wootton, J. Timothy ;
Carroll, Ian ;
Emmerson, Mark ;
Micheli, Fiorenza ;
Novak, Mark .
ECOLOGY, 2008, 89 (04) :952-961