Suppression and restoration of disorder-induced light localization mediated by PT-symmetry breaking

被引:15
作者
Kartashov, Yaroslav V. [1 ,2 ]
Hang, Chao [3 ,4 ]
Konotop, Vladimir V. [5 ,6 ]
Vysloukh, Victor A. [7 ]
Huang, Guoxiang [3 ,4 ]
Torner, Lluis [1 ,8 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Barcelona 08860, Spain
[2] Russian Acad Sci, Inst Spect, Troitsk 142190, Moscow Region, Russia
[3] E China Normal Univ, State Key Lab Precis Spect, Shanghai 200062, Peoples R China
[4] E China Normal Univ, Dept Phys, Shanghai 200062, Peoples R China
[5] Univ Lisbon, Ctr Fis Teor & Computac, P-1749016 Lisbon, Portugal
[6] Univ Lisbon, Fac Ciencias, Dept Fis, P-1749016 Lisbon, Portugal
[7] Univ Americas Puebla, Dept Fis & Matemat, Cholula 72820, Mexico
[8] Univ Politecn Cataluna, ES-08034 Barcelona, Spain
关键词
Anderson localization; optical lattices; parity-time symmetry; ANDERSON LOCALIZATION; DIFFUSION; ABSENCE; STATES;
D O I
10.1002/lpor.201500149
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We uncover that the breaking point of the PT symmetry in optical waveguide arrays has a dramatic impact on light localization induced by the off-diagonal disorder. Specifically, when the gain/loss control parameter approaches a critical value at which PT-symmetry breaking occurs, a fast growth of the coupling between neighboring waveguides causes diffraction to dominate to an extent that light localization is strongly suppressed and the statistically averaged width of the output pattern substantially increases. Beyond the symmetry-breaking point localization is gradually restored, although in this regime the power of localized modes grows upon propagation. The strength of localization monotonically increases with disorder at both broken and unbroken PT-symmetry. Our findings are supported by statistical analysis of parameters of stationary eigenmodes of disordered-symmetric waveguide arrays and by analysis of dynamical evolution of single-site excitations in such structures.
引用
收藏
页码:100 / 107
页数:8
相关论文
共 46 条
  • [1] Abdullaev S. S., 1980, SOV J RADIOFIZIKA, V23, P766
  • [2] SCALING THEORY OF LOCALIZATION - ABSENCE OF QUANTUM DIFFUSION IN 2 DIMENSIONS
    ABRAHAMS, E
    ANDERSON, PW
    LICCIARDELLO, DC
    RAMAKRISHNAN, TV
    [J]. PHYSICAL REVIEW LETTERS, 1979, 42 (10) : 673 - 676
  • [3] ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES
    ANDERSON, PW
    [J]. PHYSICAL REVIEW, 1958, 109 (05): : 1492 - 1505
  • [4] Electromagnetic localization in dispersive stratified media with random loss and gain
    Asatryan, AA
    Nicorovici, NA
    Botten, LC
    de Sterke, CM
    Robinson, PA
    McPhedran, RC
    [J]. PHYSICAL REVIEW B, 1998, 57 (21) : 13535 - 13549
  • [5] Light localization induced by a random imaginary refractive index
    Basiri, A.
    Bromberg, Y.
    Yamilov, A.
    Cao, H.
    Kottos, T.
    [J]. PHYSICAL REVIEW A, 2014, 90 (04):
  • [6] Making sense of non-Hermitian Hamiltonians
    Bender, Carl M.
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) : 947 - 1018
  • [7] Exponentially Fragile PT Symmetry in Lattices with Localized Eigenmodes
    Bendix, Oliver
    Fleischmann, Ragnar
    Kottos, Tsampikos
    Shapiro, Boris
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (03)
  • [8] Direct observation of Anderson localization of matter waves in a controlled disorder
    Billy, Juliette
    Josse, Vincent
    Zuo, Zhanchun
    Bernard, Alain
    Hambrecht, Ben
    Lugan, Pierre
    Clement, David
    Sanchez-Palencia, Laurent
    Bouyer, Philippe
    Aspect, Alain
    [J]. NATURE, 2008, 453 (7197) : 891 - 894
  • [9] Spectra of PT-symmetric operators and perturbation theory
    Caliceti, E
    Graffi, S
    Sjöstrand, J
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (01): : 185 - 193
  • [10] MICROWAVE LOCALIZATION BY 2-DIMENSIONAL RANDOM SCATTERING
    DALICHAOUCH, R
    ARMSTRONG, JP
    SCHULTZ, S
    PLATZMAN, PM
    MCCALL, SL
    [J]. NATURE, 1991, 354 (6348) : 53 - 55