Classifying Alzheimer's disease with brain imaging and genetic data using a neural network framework

被引:50
作者
Ning, Kaida [1 ,2 ]
Chen, Bo [3 ]
Sun, Fengzhu [2 ]
Hobel, Zachary [1 ]
Zhao, Lu [1 ]
Matloff, Will [1 ,4 ]
Toga, Arthur W. [1 ]
机构
[1] Univ Southern Calif, Keck Sch Med, USC Stevens Neuroimaging & Informat Inst, 2025 Zonal Ave, Los Angeles, CA 90033 USA
[2] Univ Southern Calif, Mol & Computat Biol Program, Los Angeles, CA USA
[3] CALTECH, Computat & Neural Syst Program, Pasadena, CA 91125 USA
[4] Univ Southern Calif, Grad Program Neurosci, Los Angeles, CA USA
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
Alzheimer's disease; Mild cognitive impairment; Brain imaging; Genetics; Neural network; Understanding neural network; MRI; INDIVIDUALS; PREDICTION; BIOMARKERS; CONVERSION; EPSILON-4; ATROPHY; CORTEX; ONSET; AGE;
D O I
10.1016/j.neurobiolaging.2018.04.009
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
A long-standing question is how to best use brain morphometric and genetic data to distinguish Alzheimer's disease (AD) patients from cognitively normal (CN) subjects and to predict those who will progress from mild cognitive impairment (MCI) to AD. Here, we use a neural network (NN) framework on both magnetic resonance imaging-derived quantitative structural brain measures and genetic data to address this question. We tested the effectiveness of NN models in classifying and predicting AD. We further performed a novel analysis of the NN model to gain insight into the most predictive imaging and genetics features and to identify possible interactions between features that affect AD risk. Data were obtained from the AD Neuroimaging Initiative cohort and included baseline structural MRI data and single nucleotide polymorphism (SNP) data for 138 AD patients, 225 CN subjects, and 358 MCI patients. We found that NN models with both brain and SNP features as predictors perform significantly better than models with either alone in classifying AD and CN subjects, with an area under the receiver operating characteristic curve (AUC) of 0.992, and in predicting the progression from MCI to AD (AUC = 0.835). The most important predictors in the NN model were the left middle temporal gyrus volume, the left hippocampus volume, the right entorhinal cortex volume, and the APOE (a gene that encodes apolipoprotein E) epsilon 4 risk allele. Furthermore, we identified interactions between the right parahippocampal gyrus and the right lateral occipital gyrus, the right banks of the superior temporal sulcus and the left posterior cingulate, and SNP rs10838725 and the left lateral occipital gyrus. Our work shows the ability of NN models to not only classify and predict AD occurrence but also to identify important AD risk factors and interactions among them. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:151 / 158
页数:8
相关论文
共 50 条
  • [1] Different multivariate techniques for automated classification of MRI data in Alzheimer's disease and mild cognitive impairment
    Aguilar, Carlos
    Westman, Eric
    Muehlboeck, J-Sebastian
    Mecocci, Patrizia
    Vellas, Bruno
    Tsolaki, Magda
    Kloszewska, Iwona
    Soininen, Hilkka
    Lovestone, Simon
    Spenger, Christian
    Simmons, Andrew
    Wahlund, Lars-Olof
    [J]. PSYCHIATRY RESEARCH-NEUROIMAGING, 2013, 212 (02) : 89 - 98
  • [2] [Anonymous], 2018, P INT C LEARN REPR I
  • [3] Integration and relative value of biomarkers for prediction of MCI to AD progression: Spatial patterns of brain atrophy, cognitive scores, APOE genotype and CSF biomarkers
    Da, Xiao
    Toledo, Jon B.
    Zee, Jarcy
    Wolk, David A.
    Xie, Sharon X.
    Ou, Yangming
    Shacklett, Amanda
    Parmpi, Paraskevi
    Shaw, Leslie
    Trojanowski, John Q.
    Davatzikos, Christos
    [J]. NEUROIMAGE-CLINICAL, 2014, 4 : 164 - 173
  • [4] Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification
    Davatzikos, Christos
    Bhatt, Priyanka
    Shaw, Leslie M.
    Batmanghelich, Kayhan N.
    Trojanowski, John Q.
    [J]. NEUROBIOLOGY OF AGING, 2011, 32 (12) : 2322.e19 - 2322.e27
  • [5] Longitudinal progression of Alzheimers-like patterns of atrophy in normal older adults: the SPARE-AD index
    Davatzikos, Christos
    Xu, Feng
    An, Yang
    Fan, Yong
    Resnick, Susan M.
    [J]. BRAIN, 2009, 132 : 2026 - 2035
  • [6] Alzheimer's disease as a disconnection syndrome?
    Delbeuck, X
    Van der Linden, M
    Collette, F
    [J]. NEUROPSYCHOLOGY REVIEW, 2003, 13 (02) : 79 - 92
  • [7] Automated MRI measures identify individuals with mild cognitive impairment and Alzheimers disease
    Desikan, Rahul S.
    Cabral, Howard J.
    Hess, Christopher P.
    Dillon, William P.
    Glastonbury, Christine M.
    Weiner, Michael W.
    Schmansky, Nicholas J.
    Greve, Douglas N.
    Salat, David H.
    Buckner, Randy L.
    Fischl, Bruce
    [J]. BRAIN, 2009, 132 : 2048 - 2057
  • [8] Population-based Analysis of Alzheimer's Disease Risk Alleles Implicates Genetic Interactions
    Ebbert, Mark T. W.
    Ridge, Perry G.
    Wilson, Andrew R.
    Sharp, Aaron R.
    Bailey, Matthew
    Norton, Maria C.
    Tschanz, Joann T.
    Munger, Ronald G.
    Corcoran, Christopher D.
    Kauwe, John S. K.
    [J]. BIOLOGICAL PSYCHIATRY, 2014, 75 (09) : 732 - 737
  • [9] Common polygenic variation enhances risk prediction for Alzheimer's disease
    Escott-Price, Valentina
    Sims, Rebecca
    Bannister, Christian
    Harold, Denise
    Vronskaya, Maria
    Majounie, Elisa
    Badarinarayan, Nandini
    Morgan, Kevin
    Passmore, Peter
    Holmes, Clive
    Powell, John
    Brayne, Carol
    Gill, Michael
    Mead, Simon
    Goate, Alison
    Cruchaga, Carlos
    Lambert, Jean-Charles
    van Duijn, Cornelia
    Maier, Wolfgang
    Ramirez, Alfredo
    Holmans, Peter
    Jones, Lesley
    Hardy, John
    Seshadri, Sudha
    Schellenberg, Gerard D.
    Amouyel, Philippe
    Williams, Julie
    [J]. BRAIN, 2015, 138 : 3673 - 3684
  • [10] Structural imaging biomarkers of Alzheimer's disease: predicting disease progression
    Eskildsen, Simon F.
    Coupe, Pierrick
    Fonov, Vladimir S.
    Pruessner, Jens C.
    Collins, D. Louis
    [J]. NEUROBIOLOGY OF AGING, 2015, 36 : S23 - S31