FibroGENE: A gene-based model for staging liver fibrosis

被引:56
作者
Eslam, Mohammed [1 ]
Hashem, Ahmed M. [2 ]
Romero-Gomez, Manuel [3 ,4 ]
Berg, Thomas [5 ,6 ]
Dore, Gregory J. [7 ,8 ]
Mangia, Alessandra [9 ]
Chan, Henry Lik Yuen [10 ]
Irving, William L. [11 ]
Sheridan, David [12 ,13 ]
Abate, Maria Lorena [14 ]
Adams, Leon A. [15 ]
Weltman, Martin [16 ]
Bugianesi, Elisabetta [14 ]
Spengler, Ulrich [17 ]
Shaker, Olfat [18 ]
Fischer, Janett [5 ]
Mollison, Lindsay [19 ]
Cheng, Wendy [20 ]
Nattermann, Jacob [17 ]
Riordan, Stephen [21 ,22 ]
Miele, Luca [23 ]
Kelaeng, Kebitsaone Simon [1 ]
Ampuero, Javier [3 ,4 ]
Ahlenstiel, Golo [1 ]
McLeod, Duncan [24 ]
Powell, Elizabeth [25 ,26 ]
Liddle, Christopher [1 ]
Douglas, Mark W. [1 ]
Booth, David R. [27 ,28 ]
George, Jacob [1 ]
机构
[1] Univ Sydney, Westmead Millennium Inst Med Res, Storr Liver Ctr, Sydney, NSW 2006, Australia
[2] Menia Univ, Fac Engn, Dept Syst & Biomed Engn, Al Minya, Egypt
[3] Hosp Univ Valme, Unit Clin Management Digest Dis, Seville, Spain
[4] Hosp Univ Valme, CIBERehd, Seville, Spain
[5] Univ Med Berlin, Campus Virchow Klinikum, Charite, Med Klin mS Hepatol & Gastroenterol, Berlin, Germany
[6] Univ Clin Leipzig, Dept Hepatol, Clin Gastroenterol & Rheumatol, Leipzig, Germany
[7] Univ New S Wales, Kirby Inst, Sydney, NSW, Australia
[8] St Vincents Hosp, Sydney, NSW 2010, Australia
[9] IRCCS, Osped Casa Sollievo Sofferenza, Div Hepatol, San Giovanni Rotondo, Italy
[10] Chinese Univ Hong Kong, Prince Wales Hosp, Dept Med & Therapeut, Hong Kong, Hong Kong, Peoples R China
[11] Univ Nottingham, NIHR Biomed Res Unit Gastroenterol & Liver, Nottingham NG7 2RD, England
[12] Newcastle Univ, Sch Med, Inst Cellular Med, Liver Res Grp, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[13] Univ Plymouth, Inst Translat & Stratified Med, Plymouth PL4 8AA, Devon, England
[14] Univ Turin, Dept Med Sci, Div Gastroenterol & Hepatol, Turin, Italy
[15] Univ Western Australia, Sir Charles Gairdner Hosp Unit, Sch Med & Pharmacol, Nedlands, WA 6009, Australia
[16] Nepean Hosp, Dept Gastroenterol & Hepatol, Sydney, NSW, Australia
[17] Univ Bonn, Dept Internal Med 1, Bonn, Germany
[18] Cairo Univ, Fac Med, Med Biochem & Mol Biol Dept, Cairo, Egypt
[19] UWA, Fremantle Hosp, Sch Med & Pharmacol, Fremantle, WA, Australia
[20] Royal Perth Hosp, Dept Gastroenterol & Hepatol, Perth, WA, Australia
[21] Prince Wales Hosp, Gastrointestinal & Liver Unit, Sydney, NSW, Australia
[22] Univ New S Wales, Sydney, NSW, Australia
[23] Univ Cattolica Sacro Cuore, Dept Internal Med, I-00168 Rome, Italy
[24] Westmead Hosp, ICPMR, Dept Anat Pathol, Sydney, NSW, Australia
[25] Princess Alexandra Hosp, Dept Gastroenterol & Hepatol, Woolloongabba, Qld 4102, Australia
[26] Univ Queensland, Princess Alexandra Hosp, Sch Med, Woolloongabba, Qld, Australia
[27] Westmead Hosp, Inst Immunol & Allergy Res, Westmead, NSW, Australia
[28] Univ Sydney, Westmead Millennium Inst, Sydney, NSW 2006, Australia
基金
英国医学研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
Chronic hepatitis C; Chronic hepatitis B; Non-alcoholic steatohepatitis; NASH; IFNL; Fibrosis; Data mining analysis; CIRRHOSIS RISK SCORE; SIMPLE NONINVASIVE INDEX; HEPATITIS-C PATIENTS; TRANSIENT ELASTOGRAPHY; EXTERNAL VALIDATION; NEURAL-NETWORK; DISEASE; PREDICTION; PROGRESSION; STIFFNESS;
D O I
10.1016/j.jhep.2015.11.008
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background & Aims: The extent of liver fibrosis predicts long-erm outcomes, and hence impacts management and therapy. We developed a non-invasive algorithm to stage fibrosis using non-parametric, machine learning methods designed for predictive modeling, and incorporated an invariant genetic marker of liver fibrosis risk. Methods: Of 4277 patients with chronic liver disease, 1992 with chronic hepatitis C (derivation cohort) were analyzed to develop the model, and subsequently validated in an independent cohort of 1242 patients. The model was assessed in cohorts with chronic hepatitis B (CHB) (n = 555) and non-alcoholic fatty liver disease (NAFLD) (n = 488). Model performance was compared to FIB-4 and APRI, and also to the NAFLD fibrosis score (NFS) and Forns' index, in those with NAFLD. Results: Significant fibrosis (>= F2) was similar in the derivation (48.4%) and validation (47.4%) cohorts. The FibroGENE-DT yielded the area under the receiver operating characteristic curve (AUR-OCs) of 0.87, 0.85 and 0.804 for the prediction of fast fibrosis progression, cirrhosis and significant fibrosis risk, respectively, with comparable results in the validation cohort. The model performed well in NAFLD and CHB with AUROCs of 0.791, and 0.726, respectively. The negative predictive value to exclude cirrhosis was >0.96 in all three liver diseases. The AUROC of the FibroGENE-DT performed better than FIB-4, APRI, and NFS and Forns' index in most comparisons. Conclusion: A non-invasive decision tree model can predict liver fibrosis risk and aid decision making. (C) 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:390 / 398
页数:9
相关论文
共 53 条
[1]  
Adams LA, 2010, EXPERT REV GASTROENT, V4, P623, DOI [10.1586/egh.10.56, 10.1586/EGH.10.56]
[2]  
American Diabetes Association, 2004, Diabetes Care, V27 Suppl 1, pS5, DOI 10.2337/diacare.27.2007.S5
[3]   The NAFLD fibrosis score: A noninvasive system that identifies liver fibrosis in patients with NAFLD [J].
Angulo, Paul ;
Hui, Jason M. ;
Marchesini, Giulio ;
Bugianesi, Ellisabetta ;
George, Jacob ;
Farrell, Geoffrey C. ;
Enders, Felicity ;
Saksena, Sushma ;
Burt, Alastair D. ;
Bida, John P. ;
Lindor, Keith ;
Sanderson, Schuyler O. ;
Lenzi, Marco ;
Adams, Leon A. ;
Kench, James ;
Therneau, Terry M. ;
Day, Christopher P. .
HEPATOLOGY, 2007, 45 (04) :846-854
[4]   APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO CLINICAL MEDICINE [J].
BAXT, WG .
LANCET, 1995, 346 (8983) :1135-1138
[5]   An algorithm for the grading of activity in chronic hepatitis C [J].
Bedossa, P ;
Poynard, T .
HEPATOLOGY, 1996, 24 (02) :289-293
[6]   Transient elastography and biomarkers for liver fibrosis assessment and follow-up of inactive hepatitis B carriers [J].
Castera, L. ;
Bernard, P. -H. ;
Le Bail, B. ;
Foucher, J. ;
Trimoulet, P. ;
Merrouche, W. ;
Couzigou, P. ;
de Ledinghen, V. .
ALIMENTARY PHARMACOLOGY & THERAPEUTICS, 2011, 33 (04) :455-465
[7]   Recent advances in nonalcoholic fatty liver disease [J].
Cheung, Onpan ;
Sanyal, Arun J. .
CURRENT OPINION IN GASTROENTEROLOGY, 2010, 26 (03) :202-208
[8]   Transient elastography: a new surrogate marker of liver fibrosis influenced by major changes of transaminases [J].
Coco, B. ;
Oliveri, F. ;
Maina, A. M. ;
Ciccorossi, P. ;
Sacco, R. ;
Colombatto, P. ;
Bonino, F. ;
Brunetto, M. R. .
JOURNAL OF VIRAL HEPATITIS, 2007, 14 (05) :360-369
[9]   NEAREST NEIGHBOR PATTERN CLASSIFICATION [J].
COVER, TM ;
HART, PE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (01) :21-+
[10]   Natural history and prognostic indicators of survival in cirrhosis: A systematic review of 118 studies [J].
D'Amico, G ;
Garcia-Tsao, G ;
Pagliaro, L .
JOURNAL OF HEPATOLOGY, 2006, 44 (01) :217-231