Percolative metal-insulator transition in LaMnO3

被引:12
作者
Sherafati, M. [1 ]
Baldini, M. [2 ,3 ]
Malavasi, L. [4 ,5 ]
Satpathy, S. [1 ]
机构
[1] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA
[2] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA
[3] Argonne Natl Lab, Adv Photon Source, Carnegie Inst Washington, HPSynC,Geophys Lab, Argonne, IL 60439 USA
[4] Univ Pavia, Dept Chem, I-27100 Pavia, Italy
[5] Univ Pavia, INSTM, I-27100 Pavia, Italy
关键词
ELECTRONIC-STRUCTURE; CONDUCTIVITY; FERROMAGNETISM; PHYSICS;
D O I
10.1103/PhysRevB.93.024107
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We show that the pressure-induced metal-insulator transition (MIT) in LaMnO3 is fundamentally different from the Mott-Hubbard transition and is percolative in nature, with the measured resistivity obeying the percolation scaling laws. Using the Gutzwiller method to treat correlation effects in a model Hamiltonian that includes both Coulomb and Jahn-Teller interactions, we show, one, that the MIT is driven by a competition between electronic correlation and the electron-lattice interaction, an issue that has been long debated, and two, that with compressed volume, the system has a tendency towards phase separation into insulating and metallic regions, consisting, respectively, of Jahn-Teller distorted and undistorted octahedra. This tendency manifests itself in a mixed phase of intermixed insulating and metallic regions in the experiment. Conduction in the mixed phase occurs by percolation and the MIT occurs when the metallic volume fraction, steadily increasing with pressure, exceeds the percolation threshold v(c) approximate to 0.29. Measured high-pressure resistivity follows the percolation scaling laws quite well, and the temperature dependence follows the Efros-Shklovskii variable-range hopping behavior for granular materials.
引用
收藏
页数:7
相关论文
共 50 条
[21]   Metal-insulator transition in NiS2-xSex [J].
Kunes, J. ;
Baldassarre, L. ;
Schaechner, B. ;
Rabia, K. ;
Kuntscher, C. A. ;
Korotin, Dm. M. ;
Anisimov, V. I. ;
McLeod, J. A. ;
Kurmaev, E. Z. ;
Moewes, A. .
PHYSICAL REVIEW B, 2010, 81 (03)
[22]   Asymmetric Metal-Insulator Transition in Disordered Ferromagnetic Films [J].
Misra, R. ;
Hebard, A. F. ;
Muttalib, K. A. ;
Woelfle, P. .
PHYSICAL REVIEW LETTERS, 2011, 107 (03)
[23]   Thermodynamics of the metal-insulator transition in the extended Hubbard model [J].
Schueler, Malte ;
van Loon, Erik G. C. P. ;
Katsnelson, Mikhail, I ;
Wehling, Tim O. .
SCIPOST PHYSICS, 2019, 6 (06)
[24]   Importance of anisotropic Coulomb interaction in LaMnO3 [J].
Mellan, Thomas A. ;
Cora, Furio ;
Grau-Crespo, Ricardo ;
Ismail-Beigi, Sohrab .
PHYSICAL REVIEW B, 2015, 92 (08)
[25]   Ligand Hole Driven Metal-Insulator Transition Exemplified in a Layered Transition Metal Oxide [J].
Sarkar, Arindam ;
Banerjee, Hrishit ;
Das, Debashish ;
Singh, Prashant ;
Alam, Aftab .
CHEMISTRY OF MATERIALS, 2025, 37 (13) :4607-4616
[26]   Achievement of Curie transition to 330 K by Ba substitution in LaMnO3 [J].
Mahapatra, Ranjita ;
Kar, Nirlipta ;
Biswal, Bijaylaxmi ;
Sahu, Dipti R. ;
Mohanty, Pragyan ;
Mishra, D. K. .
MATERIALS TODAY-PROCEEDINGS, 2021, 35 :127-129
[27]   Electronic transport, metal-insulator transition, and Wigner crystallization in transition metal dichalcogenide monolayers [J].
Huang, Yi ;
Sarma, Sankar Das .
PHYSICAL REVIEW B, 2024, 109 (24)
[28]   Quantified degeneracy, entropy, and metal-insulator transition in complex transition-metal oxides [J].
Sim, Jae-Hoon ;
Ryee, Siheon ;
Lee, Hunpyo ;
Han, Myung Joon .
PHYSICAL REVIEW B, 2018, 98 (16)
[29]   Metal-insulator transition and lattice instability of paramagnetic V2O3 [J].
Leonov, I. ;
Anisimov, V. I. ;
Vollhardt, D. .
PHYSICAL REVIEW B, 2015, 91 (19)
[30]   Light-induced metal-insulator transition in SrTiO3 by photoresistance spectroscopy [J].
Bridoux, G. ;
Villafuerte, M. ;
Ferreyra, J. M. ;
Bachi, N. ;
Figueroa, C. A. ;
Heluani, S. P. .
PHYSICAL REVIEW B, 2015, 92 (15)