Vlasov multi-dimensional model dispersion relation

被引:2
作者
Lushnikov, Pavel M. [1 ]
Rose, Harvey A. [2 ,3 ]
Silantyev, Denis A. [1 ,3 ]
Vladimirova, Natalia [1 ,3 ]
机构
[1] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[3] New Mexico Consortium, Los Alamos, NM 87544 USA
基金
美国国家科学基金会;
关键词
STIMULATED RAMAN-SCATTERING; INSTABILITY; WAVES;
D O I
10.1063/1.4886122
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A hybrid model of the Vlasov equation in multiple spatial dimension D>1 [H. A. Rose and W. Daughton, Phys. Plasmas 18, 122109 (2011)], the Vlasov multi dimensional model (VMD), consists of standard Vlasov dynamics along a preferred direction, the z direction, and N flows. At each z, these flows are in the plane perpendicular to the z axis. They satisfy Eulerian-type hydrodynamics with coupling by self-consistent electric and magnetic fields. Every solution of the VMD is an exact solution of the original Vlasov equation. We show approximate convergence of the VMD Langmuir wave dispersion relation in thermal plasma to that of Vlasov-Landau as N increases. Departure from strict rotational invariance about the z axis for small perpendicular wavenumber Langmuir fluctuations in 3D goes to zero like theta(N), where theta is the polar angle and flows are arranged uniformly over the azimuthal angle. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Multi-dimensional Simulations of Core-Collapse Supernova Explosions with CHIMERA
    Messer, O. E. B.
    Harris, J. A.
    Hix, W. R.
    Lentz, E. J.
    Bruenn, S. W.
    Mezzacappa, A.
    [J]. 14TH INTERNATIONAL SYMPOSIUM ON ORIGIN OF MATTER AND EVOLUTION OF GALAXIES (OMEG 2017), 2018, 1947
  • [23] Modulation and nonlinear evolution of multi-dimensional Langmuir wave envelopes in a relativistic plasma
    Shahmansouri, M.
    Misra, A. P.
    [J]. PHYSICS OF PLASMAS, 2016, 23 (12)
  • [24] Long-Time Stability of Multi-Dimensional Noncharacteristic Viscous Boundary Layers
    Nguyen, Toan
    Zumbrun, Kevin
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 299 (01) : 1 - 44
  • [25] RESULTS FROM CORE-COLLAPSE SIMULATIONS WITH MULTI-DIMENSIONAL, MULTI-ANGLE NEUTRINO TRANSPORT
    Brandt, Timothy D.
    Burrows, Adam
    Ott, Christian D.
    Livne, Eli
    [J]. ASTROPHYSICAL JOURNAL, 2011, 728 (01)
  • [26] The analytical investigation of time-fractional multi-dimensional Navier-Stokes equation
    Shah, Rasool
    Khan, Hassan
    Baleanu, Dumitru
    Kumam, Poom
    Arif, Muhammad
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) : 2941 - 2956
  • [27] Multi-dimensional incoherent Thomson scattering system in PHAse Space MApping (PHASMA) facility
    Shi, Peiyun
    Scime, Earl E.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (02)
  • [28] On ground state (in-)stability in multi-dimensional cubic-quintic Schrodinger equations
    Carles, Remi
    Klein, Christian
    Sparber, Christof
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (02) : 423 - 443
  • [29] PDRF: A general dispersion relation solver for magnetized multi-fluid plasma
    Xie, Hua-sheng
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (02) : 670 - 675
  • [30] Controllability of cascade coupled systems of multi-dimensional evolution PDEs by a reduced number of controls
    Alabau-Boussouira, Fatiha
    [J]. COMPTES RENDUS MATHEMATIQUE, 2012, 350 (11-12) : 577 - 582