Vlasov multi-dimensional model dispersion relation

被引:2
|
作者
Lushnikov, Pavel M. [1 ]
Rose, Harvey A. [2 ,3 ]
Silantyev, Denis A. [1 ,3 ]
Vladimirova, Natalia [1 ,3 ]
机构
[1] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[3] New Mexico Consortium, Los Alamos, NM 87544 USA
基金
美国国家科学基金会;
关键词
STIMULATED RAMAN-SCATTERING; INSTABILITY; WAVES;
D O I
10.1063/1.4886122
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A hybrid model of the Vlasov equation in multiple spatial dimension D>1 [H. A. Rose and W. Daughton, Phys. Plasmas 18, 122109 (2011)], the Vlasov multi dimensional model (VMD), consists of standard Vlasov dynamics along a preferred direction, the z direction, and N flows. At each z, these flows are in the plane perpendicular to the z axis. They satisfy Eulerian-type hydrodynamics with coupling by self-consistent electric and magnetic fields. Every solution of the VMD is an exact solution of the original Vlasov equation. We show approximate convergence of the VMD Langmuir wave dispersion relation in thermal plasma to that of Vlasov-Landau as N increases. Departure from strict rotational invariance about the z axis for small perpendicular wavenumber Langmuir fluctuations in 3D goes to zero like theta(N), where theta is the polar angle and flows are arranged uniformly over the azimuthal angle. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A multi-dimensional relation model for dimensional sentiment analysis
    Xie, Housheng
    Lin, Wei
    Lin, Shuying
    Wang, Jin
    Yu, Liang-Chih
    INFORMATION SCIENCES, 2021, 579 : 832 - 844
  • [2] On degenerate multi-dimensional dispersion laws
    D. D. Tskhakaya
    E. I. Shulman
    Theoretical and Mathematical Physics, 1997, 112 : 892 - 898
  • [3] On degenerate multi-dimensional dispersion laws
    Tskhakaya, DD
    Shulman, EI
    THEORETICAL AND MATHEMATICAL PHYSICS, 1997, 112 (01) : 892 - 898
  • [4] On algebraic damping close to inhomogeneous Vlasov equilibria in multi-dimensional spaces
    Barre, Julien
    Yamaguchi, Yoshiyuki Y.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (22)
  • [5] DISCONTINUOUS GALERKIN METHODS FOR THE MULTI-DIMENSIONAL VLASOV-POISSON PROBLEM
    Ayuso De Dios, Blanca
    Carrillo, Jose A.
    Shu, Chi-Wang
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (12):
  • [6] Multi-dimensional Vlasov simulations on trapping-induced sidebands of Langmuir waves
    Chen, Y.
    Zheng, C. Y.
    Liu, Z. J.
    Cao, L. H.
    Xiao, C. Z.
    PHYSICS OF PLASMAS, 2021, 28 (11)
  • [7] A High Order Multi-Dimensional Characteristic Tracing Strategy for the Vlasov–Poisson System
    Jing-Mei Qiu
    Giovanni Russo
    Journal of Scientific Computing, 2017, 71 : 414 - 434
  • [8] A multi-dimensional model of clinical utility
    Smart, Andrew
    INTERNATIONAL JOURNAL FOR QUALITY IN HEALTH CARE, 2006, 18 (05) : 377 - 382
  • [9] A multi-dimensional model to approach peace
    Lopez-Lopez, Wilson
    INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2016, 51 : 920 - 920
  • [10] Multi-dimensional model order selection
    Carvalho Lustosa da Costa, Joao Paulo
    Roemer, Florian
    Haardt, Martin
    de Sousa, Rafael Timoteo, Jr.
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2011,