Asymptotic limits of Navier-Stokes equations with quantum effects

被引:8
作者
Yang, Jianwei [1 ]
Ju, Qiangchang [2 ]
Yang, Yong-Fu [3 ]
机构
[1] North China Univ Water Resources & Elect Power, Coll Math & Informat Sci, Zhengzhou 450045, Henan Province, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[3] Hohai Univ, Dept Math, Coll Sci, Nanjing 210098, Jiangsu, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2015年 / 66卷 / 05期
基金
中国国家自然科学基金;
关键词
Incompressible limit; Semiclassical limit; Relative entropy method; Quantum Navier-Stokes equations; Incompressible Navier-Stokes equations; GLOBAL WEAK SOLUTIONS; SINGULAR LIMITS; EXISTENCE;
D O I
10.1007/s00033-015-0554-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the combined incompressible limit and semiclassical limit of the weak solutions to the barotropic quantum Navier-Stokes equations of compressible flows. By using the relative entropy method, we show that for well-prepared initial data, the weak solutions of the compressible quantum Navier-Stokes model converge to the strong solution of the incompressible Navier-Stokes equations as long as the latter exists. Furthermore, the convergence rates are also obtained.
引用
收藏
页码:2271 / 2283
页数:13
相关论文
共 17 条
[1]   Low mach number limit of the full Navier-Stokes equations [J].
Alazard, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 180 (01) :1-73
[2]   Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model [J].
Bresch, D ;
Desjardins, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 238 (1-2) :211-223
[3]  
Bresch D., 2003, COMMUN PART DIFF EQ, V28, P1009
[4]   Derivation of viscous correction terms for the isothermal quantum Euler model [J].
Brull, S. ;
Mehats, F. .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2010, 90 (03) :219-230
[5]   SINGULAR LIMITS IN COMPRESSIBLE FLUID-DYNAMICS [J].
DAVEIGA, HB .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 128 (04) :313-327
[6]   Global existence of solutions to one-dimensional viscous quantum hydrodynamic equations [J].
Gamba, Irene M. ;
Juengel, Ansgar ;
Vasseur, Alexis .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (11) :3117-3135
[7]  
ISOZAKI H, 1987, J REINE ANGEW MATH, V381, P1
[8]   Incompressible limit of the non-isentropic Navier-Stokes equations with well-prepared initial data in three-dimensional bounded domains [J].
Jiang, Song ;
Ou, Yaobin .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 96 (01) :1-28
[9]   GLOBAL WEAK SOLUTIONS TO COMPRESSIBLE NAVIER-STOKES EQUATIONS FOR QUANTUM FLUIDS [J].
Juengel, Ansgar .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (03) :1025-1045
[10]  
Kato T., 1972, Journal of Functional Analysis, V9, P296, DOI 10.1016/0022-1236(72)90003-1