New Challenges on the Regularity of Minimizers of Functionals

被引:0
作者
Ragusa, Maria Alessandra [1 ]
Tachikawa, Atsushi [2 ]
机构
[1] Univ Catania, Dipartimento Matemat & Informat, Viale A Doria 6, I-95125 Catania, Italy
[2] Tokyo Univ Sci, Fac Sci & Technol, Dept Math, Noda, Chiba 2788510, Japan
关键词
Regularity; minimizers; non-stardard growth; BOUNDARY-REGULARITY; HOLDER CONTINUITY; OBSTACLE PROBLEMS; DIRICHLET PROBLEM; INTEGRALS; EQUATIONS; MINIMA; SPACES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our aim is to obtain regularity of minimizers of functionals under the nonstandard growth conditions. Starting point is the study made by the authors finalized to investigate the regularity of the minimizers of quadratic functionals, whose integrands have vanishing mean oscillation coefficients, using some majorizations for the functionals, rather than the well known Euler's equation associated with it.
引用
收藏
页码:675 / 690
页数:16
相关论文
共 38 条
[1]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[2]   Regularity results for a class of functionals with non-standard growth [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) :121-140
[3]   ON BMO REGULARITY FOR LINEAR ELLIPTIC-SYSTEMS [J].
ACQUISTAPACE, P .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1992, 161 :231-269
[4]  
[Anonymous], 2001, Ann. Scuola Norm. Sup. Pisa Cl. Sci
[5]  
[Anonymous], LECT NOTES
[6]  
[Anonymous], 1983, ANN MATH STUDIES
[7]  
Campanato S., 1980, SISTEMI ELLITTICI FO
[8]   W2,P-SOLVABILITY OF THE DIRICHLET PROBLEM FOR NONDIVERGENCE ELLIPTIC-EQUATIONS WITH VMO COEFFICIENTS [J].
CHIARENZA, F ;
FRASCA, M ;
LONGO, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 336 (02) :841-853
[9]   Integral representation and Γ-convergence of variational integrals with P(X)-growth [J].
Coscia, A ;
Mucci, D .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 7 (21) :495-519
[10]   Holder continuity of the gradient of p(x)-harmonic mappings [J].
Coscia, A ;
Mingione, G .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (04) :363-368