Predicting objective response rate (ORR) in immune checkpoint inhibitor (ICI) therapies with machine learning (ML) by combining clinical and patient-reported data

被引:0
|
作者
Iivanainen, S. M. E. [1 ]
Esktrom, J. [2 ]
Virtanen, H. [2 ]
Lang, L. [2 ]
Kataja, V. [2 ]
Koivunen, J. [1 ]
机构
[1] Oulu Univ Hosp, Oncol & Radiotherapy Dept, Oulu, Finland
[2] Kaiku Hlth Oy, Digital Therapeut, Helsinki, Finland
关键词
D O I
10.1016/j.annonc.2020.10.525
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
38P
引用
收藏
页码:S1431 / S1431
页数:1
相关论文
共 32 条
  • [1] Predicting Objective Response Rate (ORR) in Immune Checkpoint Inhibitor (ICI) Therapies with Machine Learning (ML) by Combining Clinical and Patient-Reported Data
    Iivanainen, Sanna
    Ekstrom, Jussi
    Virtanen, Henri
    Kataja, Vesa V.
    Koivunen, Jussi P.
    APPLIED SCIENCES-BASEL, 2022, 12 (03):
  • [2] Predicting onset and continuity of patient-reported symptoms in cancer patients undergoing immune checkpoint inhibitor (ICI) therapies using machine learning
    Livanainen, S. M. E.
    Ekstrom, J.
    Virtanen, H.
    Koivunen, J. P.
    ANNALS OF ONCOLOGY, 2019, 30
  • [3] Electronic patient-reported outcomes (ePROs) and machine learning (ML) in predicting the presence and onset of immune-related adverse events (irAEs) of immune checkpoint inhibitor (ICI) therapies.
    Iivanainen, Sanna
    Ekstrom, Jussi
    Kataja, Vesa V.
    Virtanen, Henri
    Koivunen, Jussi
    JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (15)
  • [4] Electronic patient-reported outcomes and machine learning in predicting immune-related adverse events of immune checkpoint inhibitor therapies
    Sanna Iivanainen
    Jussi Ekstrom
    Henri Virtanen
    Vesa V. Kataja
    Jussi P. Koivunen
    BMC Medical Informatics and Decision Making, 21
  • [5] Electronic patient-reported outcomes and machine learning in predicting immune-related adverse events of immune checkpoint inhibitor therapies
    Iivanainen, Sanna
    Ekstrom, Jussi
    Virtanen, Henri
    Kataja, Vesa V.
    Koivunen, Jussi P.
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2021, 21 (01) : 205
  • [6] Predicting the onset of immune-related adverse events (irAEs) in immune checkpoint inhibitor (ICI) therapies using a machine learning (ML) model trained with electronic patient-reported outcomes (ePROs) and lab measurements
    Iivanainen, S. M. E.
    Ekstrom, J.
    Kataja, V.
    Virtanen, H.
    Koivunen, J.
    ANNALS OF ONCOLOGY, 2020, 31 : S1057 - S1057
  • [7] Predicting patient-reported symptoms for patients undergoing immune checkpoint inhibitor (ICI) therapies using different measurement system than in prediction model training
    Popescu, R. A.
    Ekstrom, J.
    Leemann, H.
    Virtanen, H.
    Kataja, V.
    SWISS MEDICAL WEEKLY, 2020, : 33S - 34S
  • [8] Prediction of response and toxicity to immune checkpoint inhibitor therapies (ICI) in melanoma using deep neural networks machine learning
    Dawood, Zarmeena
    Coudray, Nicolas
    Kim, Randie H.
    Nomikou, Sofia
    Moran, Una
    Weber, Jeffrey S.
    Pavlick, Anna C.
    Wilson, Melissa
    Tsirigos, Aristotelis
    Osman, Iman
    JOURNAL OF CLINICAL ONCOLOGY, 2018, 36 (15)
  • [9] A combination model of electronic patient-reported outcomes (ePROs) and lab measurements in prediction of immune related adverse events (irAEs) and treatment response of immune checkpoint inhibitor (ICI) therapies
    Iivanainen, S. M. E.
    Ekstrom, J.
    Kataja, V.
    Virtanen, H.
    Koivunen, J.
    ANNALS OF ONCOLOGY, 2020, 31 : S1068 - S1068
  • [10] Machine learning (ML) for predicting patient-reported symptoms during breast and prostate RT
    Kononen, J.
    Ekstrom, J.
    Mentu, S.
    Kataja, V.
    Lang, L.
    Virtanen, H.
    Metso-Lintula, M.
    Joensuu, T.
    von Briel, C.
    RADIOTHERAPY AND ONCOLOGY, 2021, 161 : S764 - S765