A three-dimensional total odd nitrogen (NOy) simulation during SONEX using a stretched-grid chemical transport model

被引:25
作者
Allen, D [1 ]
Pickering, K
Stenchikov, G
Thompson, A
Kondo, Y
机构
[1] Univ Maryland, Dept Meteorol, College Pk, MD 20742 USA
[2] Nagoya Univ, Solar Terr Environm Lab, Aichi 442, Japan
[3] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA
关键词
D O I
10.1029/1999JD901029
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The relative importance of various odd nitrogen (NOy) sources including lightning, aircraft, and surface emissions on upper tropospheric total odd nitrogen is illustrated as a first application of the three-dimensional Stretched-Grid University of Maryland/Goddard Chemical-Transport Model (SG-GCTM). The SG-GCTM has been developed to look at the effect of localized sources and/or small-scale mixing processes on the large-scale or global chemical balance. For this simulation the stretched grid was chosen so that its maximum resolution is located over eastern North America and the North Atlantic; a region that includes most of the Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX) flight paths, The SONEX period (October-November 1997) is simulated by driving the SG-GCTM with assimilated data from the Goddard Earth Observing System-Stratospheric Tracers of Atmospheric Transport Data Assimilation System (GEOS-STRAT DAS). A new algorithm is used to estimate the lightning flash rates needed to calculate NOy emission by lightning. This algorithm parameterizes the flash rate in terms of upper tropospheric convective mass flux. Model-calculated upper tropospheric NOy and NOy measurements from the NASA DC-8 aircraft are compared. Spatial variations in NOy were well captured especially with the stretched-grid run; however, model-calculated peaks due to "stratospheric" NOy are occasionally too large. The lightning algorithm reproduces the temporally and spatially averaged total flash rate accurately; however, the use of emissions from observed lightning flashes significantly improves the simulation on a few days, especially November 3, 1997, showing that significant uncertainty remains in parameterizing lightning in chemistry and transport models. Aircraft emissions contributed similar to 15% of the upper tropospheric NOy averaged along SONEX flight paths within the North Atlantic Flight Corridor with the contribution exceeding 40% during portions of some flights.
引用
收藏
页码:3851 / 3876
页数:26
相关论文
共 77 条
[1]   Transport-induced interannual variability of carbon monoxide determined using a chemistry and transport model [J].
Allen, DJ ;
Kasibhatla, P ;
Thompson, AM ;
Rood, RB ;
Doddridge, BG ;
Pickering, KE ;
Hudson, RD ;
Lin, SJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D22) :28655-28669
[2]   Three-dimensional radon 222 calculations using assimilated meteorological data and a convective mixing algorithm [J].
Allen, DJ ;
Rood, RB ;
Thompson, AM ;
Hudson, RD .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D3) :6871-6881
[3]   An evaluation of deep convective mixing in the Goddard Chemical Transport Model using International Satellite Cloud Climatology Project cloud parameters [J].
Allen, DJ ;
Pickering, KE ;
Molod, A .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D21) :25467-25476
[4]   A COMPUTATIONAL STUDY OF THE RELATIONSHIPS LINKING LIGHTNING FREQUENCY AND OTHER THUNDERCLOUD PARAMETERS [J].
BAKER, MB ;
CHRISTIAN, HJ ;
LATHAM, J .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1995, 121 (527) :1525-1548
[5]   TRANSPORT AND RESIDENCE TIMES OF TROPOSPHERIC AEROSOLS INFERRED FROM A GLOBAL 3-DIMENSIONAL SIMULATION OF PB-210 [J].
BALKANSKI, YJ ;
JACOB, DJ ;
GARDNER, GM ;
GRAUSTEIN, WC ;
TUREKIAN, KK .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1993, 98 (D11) :20573-20586
[6]  
BAUGHCUM SL, 1996, NASA REF PUBL, V1385, P15
[7]   Global gridded inventories of anthropogenic emissions of sulfur and nitrogen [J].
Benkovitz, CM ;
Scholtz, MT ;
Pacyna, J ;
Tarrason, L ;
Dignon, J ;
Voldner, EC ;
Spiro, PA ;
Logan, JA ;
Graedel, TE .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D22) :29239-29253
[8]  
Bloom SC, 1996, MON WEATHER REV, V124, P1256, DOI 10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO
[9]  
2
[10]   Atmospheric impact of NOx emissions by subsonic aircraft: A three-dimensional model study [J].
Brasseur, GP ;
Muller, JF ;
Granier, C .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D1) :1423-1428