Non-existence of generalized splitting methods with positive coefficients of order higher than four

被引:3
作者
Auzinger, Winfried [1 ]
Hofstaetter, Harald [2 ]
Koch, Othmar [2 ]
机构
[1] Tech Univ Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10-E101, A-1040 Vienna, Austria
[2] Univ Wien, Inst Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
关键词
Non-reversible evolution equations; Numerical time integration; Generalized splitting methods; Positive coefficients; INTEGRATORS; SCHEMES;
D O I
10.1016/j.aml.2019.05.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that generalized exponential splitting methods making explicit use of commutators of the vector fields are limited to order four when only real coefficients are admitted. This generalizes the restriction to order two for classical splitting methods with only positive coefficients. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:48 / 52
页数:5
相关论文
共 11 条
[1]   LOCAL ERROR STRUCTURES AND ORDER CONDITIONS IN TERMS OF LIE ELEMENTS FOR EXPONENTIAL SPLITTING SCHEMES [J].
Auzinger, Winfried ;
Herfort, Wolfgang .
OPUSCULA MATHEMATICA, 2014, 34 (02) :243-255
[2]   On the necessity of negative coefficients for operator splitting schemes of order higher than two [J].
Blanes, S ;
Casas, F .
APPLIED NUMERICAL MATHEMATICS, 2005, 54 (01) :23-37
[3]   Structure of positive decompositions of exponential operators [J].
Chin, SA .
PHYSICAL REVIEW E, 2005, 71 (01)
[4]   Symplectic integrators from composite operator factorizations [J].
Chin, SA .
PHYSICS LETTERS A, 1997, 226 (06) :344-348
[5]   Nth-order operator splitting schemes and nonreversible systems [J].
Goldman, D ;
Kaper, TJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) :349-367
[6]  
Hairer E., 2006, Structure-Preserving Algorithms for Ordinary Differential Equations, V2nd
[7]   Non-satisfiability of a positivity condition for commutator-free exponential integrators of order higher than four [J].
Hofstaetter, Harald ;
Koch, Othmar .
NUMERISCHE MATHEMATIK, 2019, 141 (03) :681-691
[8]   Computations in a free Lie algebra [J].
Munthe-Kaas, H ;
Owren, B .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 357 (1754) :957-981
[9]   Construction of high-order force-gradient algorithms for integration of motion in classical and quantum systems [J].
Omelyan, IP ;
Mryglod, IM ;
Folk, R .
PHYSICAL REVIEW E, 2002, 66 (02)