Optimal robust state-feedback control of nonlinear systems: minimal time to target

被引:6
作者
Hammer, Jacob [1 ]
机构
[1] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
关键词
Optimal control; state feedback; nonlinear control; minimal time;
D O I
10.1080/00207179.2019.1597279
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The design of optimal robust state-feedback controllers that guide a system to a target in minimal time is considered under constraints on the maximal input amplitude and the maximal overshoot of the controlled system. It is shown that such robust feedback controllers exist for a rather broad family of nonlinear systems. It is also shown that optimal performance can be approximated by state-feedback controllers that are relatively easy to design and implement.
引用
收藏
页码:433 / 451
页数:19
相关论文
共 37 条
[1]  
[Anonymous], 1955, EQUAZIONI DERIVATE P
[2]  
[Anonymous], P IFAC WORLD C SEOUL
[3]  
[Anonymous], P 5 INT C APPL MATH
[4]  
[Anonymous], P 6 INT C IND APPL M
[5]  
Bardi M., 1997, Systems Control: Foundations Applications, DOI [DOI 10.1007/978-0-8176-4755-1, 10.1007/978-0-8176-4755-1]
[7]  
Boubaker O., 2017, The inverted pendulum in control theory and robotics: from theory to new innovations
[8]  
Chakraborty D., 2008, P INT S DYN GAM APPL
[9]   An Approximate Solution to the Norm Optimal Control Problem [J].
Chakraborty, Debraj ;
Shaikshavali, C. .
2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, :4490-4495
[10]   Robust optimal control: low-error operation for the longest time [J].
Chakraborty, Debraj ;
Hammer, Jacob .
INTERNATIONAL JOURNAL OF CONTROL, 2010, 83 (04) :731-740