An Iterative Method for Backward Time-Fractional Diffusion Problem

被引:38
作者
Wang, Jun-Gang [1 ]
Wei, Ting [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
关键词
a posteriori parameter choice; a priori parameter choice; backward problem; convergence analysis; fractional diffusion equation; iterative regularization method; REGULARIZATION METHOD; ANOMALOUS TRANSPORT; CAUCHY-PROBLEM; EQUATIONS; CALCULUS;
D O I
10.1002/num.21887
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this work is to solve the backward problem for a time-fractional diffusion equation with variable coefficients in a general bounded domain. The problem is ill-posed in L-2 norm sense. An iteration scheme is proposed to obtain a regularized solution. Two kinds of convergence rates are obtained using an a priori regularization parameter choice rule and an a posteriori regularization parameter choice rule. Numerical examples in one-dimensional and two-dimensional cases are provided to show the effectiveness of the proposed methods. (C) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:2029 / 2041
页数:13
相关论文
共 37 条
[1]   A kernel-based method for the approximate solution of backward parabolic problems [J].
Ames, KA ;
Epperson, JF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (04) :1357-1390
[2]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[3]   Anomalous transport in laboratory-scale, heterogeneous porous media [J].
Berkowitz, B ;
Scher, H ;
Silliman, SE .
WATER RESOURCES RESEARCH, 2000, 36 (01) :149-158
[4]   An iteration regularization for a time-fractional inverse diffusion problem [J].
Cheng, Hao ;
Fu, Chu-Li .
APPLIED MATHEMATICAL MODELLING, 2012, 36 (11) :5642-5649
[5]   Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation [J].
Cheng, Jin ;
Nakagawa, Junichi ;
Yamamoto, Masahiro ;
Yamazaki, Tomohiro .
INVERSE PROBLEMS, 2009, 25 (11)
[6]   Numerical inversions of a source term in the FADE with a Dirichlet boundary condition using final observations [J].
Chi, Guangsheng ;
Li, Gongsheng ;
Jia, Xianzheng .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (04) :1619-1626
[7]   New fast iteration for determining surface temperature and heat flux of general sideways parabolic equation [J].
Deng, Youjun ;
Liu, Zhenhai .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (01) :156-166
[8]   Iteration methods on sideways parabolic equations [J].
Deng, Youjun ;
Liu, Zhenhai .
INVERSE PROBLEMS, 2009, 25 (09)
[9]   A non-local boundary value problem method for parabolic equations backward in time [J].
Dinh Nho Hao ;
Nguyen Van Duc ;
Sahli, Hichem .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (02) :805-815
[10]  
Gorenflo R., 2001, MATH FINANCE, P171