Particle Swarm Optimization Approach for the Segmentation of Retinal Vessels from Fundus Images

被引:1
作者
Khomri, Bilal [1 ,2 ]
Christodoulidis, Argyrios [1 ]
Djerou, Leila [2 ]
Babahenini, Mohamed Chaouki [2 ]
Cheriet, Farida [1 ]
机构
[1] Polytech Montreal, Lab LIV4D, Montreal, PQ, Canada
[2] Univ Biskra, LESIA Lab, Biskra, Algeria
来源
IMAGE ANALYSIS AND RECOGNITION, ICIAR 2017 | 2017年 / 10317卷
关键词
Retinal blood vessel segmentation; Optimization; Particle Swarm Optimization Algorithm; Multi-scale Line Detection; BLOOD-VESSELS; CLASSIFICATION;
D O I
10.1007/978-3-319-59876-5_61
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose to use the Particle Swarm Optimization (PSO) algorithm to improve the Multi-Scale Line Detection (MSLD) method for the retinal blood vessel segmentation problem. The PSO algorithm is applied to find the best arrangement of scales in the basic line detector method. The segmentation performance was validated using a public high-resolution fundus images database containing healthy subjects. The optimized MSLD method demonstrates fast convergence to the optimal solution reducing the execution time by approximately 35%. For the same level of specificity, the proposed approach improves the sensitivity rate by 3.1% compared to the original MSLD method. The proposed method will allow to reduce the amount of missing vessels segments that might lead to false positives of red lesions detection in CAD systems used for diabetic retinopathy diagnosis.
引用
收藏
页码:551 / 558
页数:8
相关论文
共 16 条
[1]   Diabetic retinopathy and diabetic macular edema - Pathophysiology, screening, and novel therapies [J].
Ciulla, TA ;
Amador, AG ;
Zinman, B .
DIABETES CARE, 2003, 26 (09) :2653-2664
[2]   Particle swarm optimization: Basic concepts, variants and applications in power systems [J].
del Valle, Yamille ;
Venayagamoorthy, Ganesh Kumar ;
Mohagheghi, Salman ;
Hernandez, Jean-Carlos ;
Harley, Ronald G. .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2008, 12 (02) :171-195
[3]  
Eberhart R., 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (Cat. No.95TH8079), P39, DOI 10.1109/MHS.1995.494215
[4]  
Emary E, 2014, IEEE IJCNN, P1792, DOI 10.1109/IJCNN.2014.6889932
[5]   Blood vessel segmentation methodologies in retinal images - A survey [J].
Fraz, M. M. ;
Remagnino, P. ;
Hoppe, A. ;
Uyyanonvara, B. ;
Rudnicka, A. R. ;
Owen, C. G. ;
Barman, S. A. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 108 (01) :407-433
[6]   Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response [J].
Hoover, A ;
Kouznetsova, V ;
Goldbaum, M .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2000, 19 (03) :203-210
[7]   Elite-guided multi-objective artificial bee colony algorithm [J].
Huo, Ying ;
Zhuang, Yi ;
Gu, Jingjing ;
Ni, Siru .
APPLIED SOFT COMPUTING, 2015, 32 :199-210
[8]   A New Supervised Method for Blood Vessel Segmentation in Retinal Images by Using Gray-Level and Moment Invariants-Based Features [J].
Marin, Diego ;
Aquino, Arturo ;
Emilio Gegundez-Arias, Manuel ;
Manuel Bravo, Jose .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (01) :146-158
[9]   Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction [J].
Mendonca, Ana Maria ;
Campilho, Aurelio .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (09) :1200-1213
[10]   An effective retinal blood vessel segmentation method using multi-scale line detection [J].
Nguyen, Uyen T. V. ;
Bhuiyan, Alauddin ;
Park, Laurence A. F. ;
Ramamohanarao, Kotagiri .
PATTERN RECOGNITION, 2013, 46 (03) :703-715