Regularity of solutions of the Cahn-Hilliard equation with non-constant mobility

被引:9
作者
Liu, Chang Chun [1 ]
Qi, Yuan Wei
Yin, Jing Xue
机构
[1] Jilin Univ, Dept Math, Changchun 130012, Peoples R China
[2] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
关键词
Cahn-Hilliard equation; regularity; Schauder estimates; CONCENTRATION-DEPENDENT MOBILITY; DEGENERATE PARABOLIC EQUATIONS; FINITE-ELEMENT APPROXIMATION; MAXIMAL ATTRACTORS; SYSTEM;
D O I
10.1007/s10114-005-0711-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the regularity of solutions for two-dimensional Cahn-Hilliard equation with non-constant mobility. Basing on the L-p type estimates and Schauder type estimates, we prove the global existence of classical solutions.
引用
收藏
页码:1139 / 1150
页数:12
相关论文
共 23 条
[1]  
ALIKAKOS ND, 1995, GAKUTO INT SER MATH, V1, P13
[2]   Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility [J].
Barrett, JW ;
Blowey, JF .
MATHEMATICS OF COMPUTATION, 1999, 68 (226) :487-517
[3]   Finite element approximation of the Cahn-Hilliard equation with degenerate mobility [J].
Barrett, JW ;
Blowey, JF ;
Garcke, H .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 37 (01) :286-318
[4]   HIGHER-ORDER NONLINEAR DEGENERATE PARABOLIC EQUATIONS [J].
BERNIS, F ;
FRIEDMAN, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 83 (01) :179-206
[5]  
BERNIS F, 1988, HOUSTON J MATH, V14, P319
[6]  
Bernis F., 1996, ADV DIFFER EQU-NY, V1, P337, DOI [10.57262/ade/1366896043, DOI 10.57262/ADE/1366896043]
[7]  
Chen XF, 1996, J DIFFER GEOM, V44, P262
[8]   A GENERALIZED DIFFUSION-MODEL FOR GROWTH AND DISPERSAL IN A POPULATION [J].
COHEN, DS ;
MURRAY, JD .
JOURNAL OF MATHEMATICAL BIOLOGY, 1981, 12 (02) :237-249
[9]  
ELLIOTT CM, 1986, ARCH RATION MECH AN, V96, P339
[10]   On the Cahn-Hilliard equation with degenerate mobility [J].
Elliott, CM ;
Garcke, H .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (02) :404-423