Non-uniform Gradient Estimates for SDEs with Local Monotonicity Conditions

被引:1
作者
Wang, Jian [1 ,2 ,3 ]
Wu, Bing Yao [1 ]
机构
[1] Fujian Normal Univ, Coll Math & Informat, Fuzhou 350007, Peoples R China
[2] Fujian Normal Univ, Fujian Key Lab Math Anal & Applicat FJKLMAA, Fuzhou 350007, Peoples R China
[3] Fujian Normal Univ, Ctr Appl Math Fujian Prov FJNU, Fuzhou 350007, Peoples R China
基金
中国国家自然科学基金;
关键词
Gradient estimate; Markov semigroup; monotonicity condition; coupling; stochastic differential equation; Lé vy process; DERIVATIVES; FORMULAS; DRIVEN;
D O I
10.1007/s10114-020-9365-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using the coupling method and the localization technique, we establish non-uniform gradient estimates for Markov semigroups of diffusions or stochastic differential equations driven by pure jump Levy noises, where the coefficients only satisfy local monotonicity conditions.
引用
收藏
页码:458 / 470
页数:13
相关论文
共 15 条
[1]   Estimates of the derivatives for parabolic operators with unbounded coefficients [J].
Bertoldi, M ;
Lorenzi, L .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (07) :2627-2664
[2]   Gradient estimates in parabolic problems with unbounded coefficients [J].
Bertoldi, M ;
Fornaro, S .
STUDIA MATHEMATICA, 2004, 165 (03) :221-254
[3]  
Cerrai, 2001, LECT NOTES MATH
[4]   A PROBABILISTIC APPROACH TO GRADIENT ESTIMATES [J].
CRANSTON, M .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1992, 35 (01) :46-55
[5]   Gradient estimates for SDEs without monotonicity type conditions [J].
Da Prato, Giuseppe ;
Priola, Enrico .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (05) :1984-2012
[6]   FORMULAS FOR THE DERIVATIVES OF HEAT SEMIGROUPS [J].
ELWORTHY, KD ;
LI, XM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 125 (01) :252-286
[7]  
Ikeda Nobuyuki, 2014, North-Holland Mathematical Library
[8]   Gradient estimates and ergodicity for SDEs driven by multiplicative Levy noises via coupling [J].
Liang, Mingjie ;
Wang, Jian .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (05) :3053-3094
[9]   Refined basic couplings and Wasserstein-type distances for SDEs with Levy noises [J].
Luo, Dejun ;
Wang, Jian .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (09) :3129-3173
[10]   Gradient estimates for diffusion semigroups with singular coefficients [J].
Priola, E ;
Wang, FY .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 236 (01) :244-264