Z-Scheme Photocatalytic Systems for Carbon Dioxide Reduction: Where Are We Now?

被引:560
作者
Zhang, Wenhao [1 ]
Mohamed, Abdul Rahman [2 ]
Ong, Wee-Jun [1 ,3 ]
机构
[1] Xiamen Univ Malaysia, Sch Energy & Chem Engn, Darul Ehsan 43900, Selangor, Malaysia
[2] Univ Sains Malaysia, Sch Chem Engn, Low Carbon Econ LCE Res Grp, Nibong Tebal 14300, Pulau Pinang, Malaysia
[3] Xiamen Univ, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China
关键词
CO2; reduction; photocatalysis; strategy– activity correlation; Z-scheme; STATE Z-SCHEME; POROUS G-C3N4 NANOSHEETS; SELECTIVE CO2 REDUCTION; ARTIFICIAL PHOTOSYNTHESIS; HYDROGEN EVOLUTION; ENERGY-CONVERSION; METAL SULFIDE; ANATASE TIO2; HETEROSTRUCTURE PHOTOCATALYST; HETEROJUNCTION PHOTOCATALYSTS;
D O I
10.1002/anie.201914925
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transforming CO2 into fuels by utilizing sunlight is promising to synchronously overcome global warming and energy-supply issues. It is crucial to design efficient photocatalysts with intriguing features such as robust light-harvesting ability, strong redox potential, high charge-separation, and excellent durability. Hitherto, a single-component photocatalyst is incapable to simultaneously meet all these criteria. Inspired by natural photosynthesis, constructing artificial Z-scheme photocatalysts provides a facile way to conquer these bottlenecks. In this review, we firstly introduce the fundamentals of photocatalytic CO2 reduction and Z-scheme systems. Thereafter we discuss state-of-the-art Z-scheme photocatalytic CO2 reduction, whereby special attention is placed on the predominant factors that affect photoactivity. Additionally, further modifications that are important for efficient photocatalysis are reviewed.
引用
收藏
页码:22894 / 22915
页数:22
相关论文
共 198 条
[2]   Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion [J].
Aguirre, Matias E. ;
Zhou, Ruixin ;
Eugene, Alexis J. ;
Guzman, Marcelo I. ;
Grela, Maria A. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 217 :485-493
[3]   Solar CO2 reduction using H2O by a semiconductor/metal-complex hybrid photocatalyst: enhanced efficiency and demonstration of a wireless system using SrTiO3 photoanodes [J].
Arai, Takeo ;
Sato, Shunsuke ;
Kajino, Tsutomu ;
Morikawa, Takeshi .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (04) :1274-1282
[4]   Indirect Z-Scheme Assembly of 2D ZnV2O6/RGO/g-C3N4 Nanosheets with RGO/pCN as Solid-State Electron Mediators toward Visible Light-Enhanced CO2 Reduction [J].
Bafaqeer, Abdullah ;
Tahir, Muhammad ;
Khan, Azmat Ali ;
Amin, Nor Aishah Saidina .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (20) :8612-8624
[5]   Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations [J].
Bai, Song ;
Jiang, Jun ;
Zhang, Qun ;
Xiong, Yujie .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (10) :2893-2939
[6]   Size-dependent role of gold in g-C3N4/BiOBr/Au system for photocatalytic CO2 reduction and dye degradation [J].
Bai, Yang ;
Chen, Ting ;
Wang, Pingquan ;
Wang, Li ;
Ye, Liqun ;
Shi, Xian ;
Bai, Wei .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 157 :406-414
[7]   g-C3N4/Bi4O5I2 heterojunction with I3-/I- redox mediator for enhanced photocatalytic CO2 conversion [J].
Bai, Yang ;
Ye, Liqun ;
Wang, Li ;
Shi, Xian ;
Wang, Pingquan ;
Bai, Wei ;
Wong, Po Keung .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 194 :98-104
[8]   CO2 capture by aqueous Na2CO3 integrated with high-quality CaCO3 formation and pure CO2 release at room conditions [J].
Barzagli, F. ;
Giorgi, C. ;
Mani, F. ;
Peruzzini, M. .
JOURNAL OF CO2 UTILIZATION, 2017, 22 :346-354
[9]   Direct Z-Scheme g-C3N4/FeWO4 Nanocomposite for Enhanced and Selective Photocatalytic CO2 Reduction under Visible Light [J].
Bhosale, Reshma ;
Jain, Srashti ;
Vinod, Chathakudath Prabhakaran ;
Kumar, Santosh ;
Ogale, Satishchandra .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (06) :6174-6183
[10]   Dimension-Matched Zinc Phthalocyanine/BiVO4 Ultrathin Nanocomposites for CO2 Reduction as Efficient Wide-Visible-Light-Driven Photocatalysts via a Cascade Charge Transfer [J].
Bian, Ji ;
Feng, Jiannan ;
Zhang, Ziqing ;
Li, Zhijun ;
Zhang, Yuhang ;
Liu, Yadi ;
Ali, Sharafat ;
Qu, Yang ;
Bai, Linlu ;
Xie, Jijia ;
Tang, Dongyan ;
Li, Xin ;
Bai, Fuquan ;
Tang, Junwang ;
Jing, Liqiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (32) :10873-10878