Solvability of a Boundary Value Problem for Elliptic Differential-Operator Equations of the Second Order with a Quadratic Complex Parameter

被引:3
作者
Aliev, B. A. [1 ,2 ]
Kerimov, V. Z. [2 ]
Yakubov, Ya. S. [3 ]
机构
[1] Azerbaijan Natl Acad Sci, Inst Math & Mech, AZ-1141 Baku, Azerbaijan
[2] Azerbaijan State Pedag Univ, Baku 370000, Azerbaijan
[3] Tel Aviv Univ, IL-6997801 Tel Aviv, Israel
关键词
SPECTRAL PARAMETER; ASYMPTOTIC-BEHAVIOR; EIGENVALUES;
D O I
10.1134/S00122661200100079
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the solvability of the problem for the elliptic second-order differential-operator equation lambda(2)u(x) u ''(x) + Au(x) = f (x), x is an element of (0; 1), in a separable Hilbert space H with the boundary conditions u'(1)+ lambda Bu(0) = f(1) and u' (0) = f(2), where lambda is a complex parameter, A and B are given linear operators in H, the operator A is phi-positive, and f, f(1), and f(2) are known functions. Sufficient conditions for the unique solvability of this problem in an appropriate function space are obtained, and an upper bound (coercive if B is a bounded operator and noncoercive if the operator B is unbounded) is established for the solution. An application of these abstract results to elliptic boundary value problems is given.
引用
收藏
页码:1306 / 1317
页数:12
相关论文
共 18 条
[1]  
AIBECHE A., 2007, B UNIONE MAT ITAL, V10, P535
[2]   Asymptotic Behavior of Eigenvalues of a Boundary Value Problem for a Second-Order Elliptic Differential-Operator Equation with Spectral Parameter Quadratically Occurring in the Boundary Condition [J].
Aliev, B. A. .
DIFFERENTIAL EQUATIONS, 2018, 54 (09) :1256-1260
[3]   Solvability of a Boundary Value Problem for Second-Order Elliptic Differential Operator Equations with a Spectral Parameter in the Equation and in the Boundary Conditions [J].
Aliev, B. A. ;
Kurbanova, N. K. ;
Yakubov, Ya. .
DIFFERENTIAL EQUATIONS, 2018, 54 (01) :67-85
[4]   One Boundary-Value Problem for Elliptic Differential-Operator Equations of the Second Order with Quadratic Spectral Parameter [J].
Aliev, B. A. ;
Kurbanova, N. K. ;
Yakubov, Ya. .
UKRAINIAN MATHEMATICAL JOURNAL, 2017, 69 (06) :857-875
[5]   Second Order Elliptic Differential-Operator Equations with Unbounded Operator Boundary Conditions in UMD Banach Spaces [J].
Aliev, B. A. ;
Yakubov, Ya. .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2011, 69 (02) :269-300
[6]  
Aliev BA, 2006, ADV DIFFERENTIAL EQU, V11, P1081
[7]  
ALIEV B. A., 2005, T NATL ACAD SCI PTMS, V25, P3
[8]  
Aliev B.A., 2006, UKR MAT ZH, V58, P1146, DOI [10.1007/s11253-006-0134-1, DOI 10.1007/S11253-006-0134-1]
[9]  
Aliev BA, 2019, PROC INST MATH MECH, V45, P213
[10]  
Aliev BA, 2014, PROC INST MATH MECH, V40, P23