REDUCED-ORDER MULTISCALE-MULTIPHYSICS MODEL FOR HETEROGENEOUS MATERIALS

被引:11
作者
Yuan, Zheng [1 ]
Jiang, Tao [1 ]
Fish, Jacob [2 ]
Morscher, Greg [3 ]
机构
[1] Multiscale Design Syst LLC, New York, NY 10010 USA
[2] Columbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USA
[3] Univ Akron, Dept Mech Engn, Akron, OH 44325 USA
关键词
multiscale; multiphysics; homogenization; coupled; heterogeneous; MATHEMATICAL HOMOGENIZATION THEORY; CREEP; COMPOSITES; SIMULATION; SCALES;
D O I
10.1615/IntJMultCompEng.2013007162
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A unified coupled multiscale mechano-diffusion-reaction model of environmental degradation of polymer matrix composite (PMC) and ceramic matrix composite (CMC) is developed. The unified multiscale-multiphysics model couples multiple physical processes at multiple scales, including oxygen diffusion, oxidation, and deformation. The salient feature of the unified multiscale-multiphysics model is its computational efficiency accomplished through a systematic model reduced carried out prior to nonlinear analysis. The model has been validated for PMR-15 reinforced carbon fiber composite and melt infiltrated CMC-NASA N24A material system.
引用
收藏
页码:45 / 64
页数:20
相关论文
共 50 条
[31]   SCALABLE BAYESIAN REDUCED-ORDER MODELS FOR SIMULATING HIGH-DIMENSIONAL MULTISCALE DYNAMICAL SYSTEMS [J].
Koutsourelakis, Phaedon-Stelios ;
Bilionis, Elias .
MULTISCALE MODELING & SIMULATION, 2011, 9 (01) :449-485
[32]   REDUCED-ORDER HYBRID MULTISCALE METHOD COMBINING THE MOLECULAR DYNAMICS AND THE DISCONTINUOUS-GALERKIN METHOD [J].
Emamy, N. ;
Lukacova-Medvid'ova, M. ;
Stalter, S. ;
Virnau, P. ;
Yelash, L. .
COUPLED PROBLEMS IN SCIENCE AND ENGINEERING VII (COUPLED PROBLEMS 2017), 2017, :62-76
[33]   Efficient multiscale modeling of heterogeneous materials using deep neural networks [J].
Aldakheel, Fadi ;
Elsayed, Elsayed S. S. ;
Zohdi, Tarek I. I. ;
Wriggers, Peter .
COMPUTATIONAL MECHANICS, 2023, 72 (01) :155-171
[34]   MULTISCALE MODELLING OF HETEROGENEOUS MATERIALS [J].
Lamut, Martin ;
Korelc, Joze ;
Rodic, Tomaz .
MATERIALI IN TEHNOLOGIJE, 2011, 45 (05) :421-426
[35]   A reduced multiscale model for nonlinear structural topology optimization [J].
Xia, Liang ;
Breitkopf, Piotr .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 280 :117-134
[36]   Development of a multiphase perfusion model for biomimetic reduced-order dense tumors [J].
Akash, Mohammad Mehedi Hasan ;
Chakraborty, Nilotpal ;
Mohammad, Jiyan ;
Reindl, Katie ;
Basu, Saikat .
EXPERIMENTAL AND COMPUTATIONAL MULTIPHASE FLOW, 2023, 5 (03) :319-329
[37]   Closure modeling in reduced-order model of Burgers' equation for control applications [J].
Imtiaz, Haroon ;
Akhtar, Imran .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2017, 231 (04) :642-656
[38]   A reduced-order model for deformable particles with application in bio-microfluidics [J].
Nair, Achuth Nair Balachandran ;
Pirker, Stefan ;
Umundum, Thomas ;
Saeedipour, Mahdi .
COMPUTATIONAL PARTICLE MECHANICS, 2020, 7 (03) :593-601
[39]   Physical-Based Reduced-Order Model for Buildings Energy Efficiency [J].
Mosca, Caterina .
PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE OF AR.TEC. (SCIENTIFIC SOCIETY OF ARCHITECTURAL ENGINEERING), VOL 3, COLLOQUI.AT.E 2024, 2025, 612 :569-581
[40]   Analysis of a reduced-order nonlinear model of a multi-physics beam [J].
Guillot, V. ;
Savadkoohi, A. Ture ;
Lamarque, C-H. .
NONLINEAR DYNAMICS, 2019, 97 (02) :1371-1401