A DISCRETE HARMONIC FUNCTION BOUNDED ON A LARGE PORTION OF Z2 IS CONSTANT

被引:4
作者
Buhovsky, Lev [1 ]
Logunov, Alexander [2 ,3 ]
Malinnikova, Eugenia [4 ,5 ]
Sodin, Mikhail [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, Tel Aviv, Israel
[2] Univ Geneva, Sect Math, Geneva, Switzerland
[3] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[4] Norwegian Univ Sci & Technol, Dept Math Sci, Trondheim, Norway
[5] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
欧洲研究理事会; 以色列科学基金会;
关键词
D O I
10.1215/00127094-2021-0037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An improvement of the Liouville theorem for discrete harmonic functions on Z(2) is obtained. More precisely, we prove that there exists a positive constant epsilon such that if u is discrete harmonic on Z(2) and for each sufficiently large square Q centered at the origin vertical bar u vertical bar <= 1 on a (1 - epsilon) portion of Q, then u is constant.
引用
收藏
页码:1349 / 1378
页数:30
相关论文
共 18 条
[1]   ELEMENTARY PROOF OF THE REMEZ INEQUALITY [J].
BOJANOV, B .
AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (05) :483-485
[2]   On localization in the continuous Anderson-Bernoulli model in higher dimension [J].
Bourgain, J ;
Kenig, CE .
INVENTIONES MATHEMATICAE, 2005, 161 (02) :389-426
[3]   Translation-invariant probability measures on entire functions [J].
Buhovsky, Lev ;
Glucksam, Adi ;
Logunov, Alexander ;
Sodin, Mikhail .
JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (01) :307-339
[4]  
CAPOULADE J., 1932, MATHEMATICA, V6, P146
[5]  
De Guzmn M., 1975, Lecture Notes in Math, V481, DOI [10.1007/BFb0081986, DOI 10.1007/BFB0081986]
[6]   Localization near the edge for the Anderson Bernoulli model on the two dimensional lattice [J].
Ding, Jian ;
Smart, Charles K. .
INVENTIONES MATHEMATICAE, 2020, 219 (02) :467-506
[7]  
EREMENKO A., 2014, ENTIRE FUNCTION BOUN
[8]   Measurably entire functions and their growth [J].
Glucksam, Adi .
ISRAEL JOURNAL OF MATHEMATICS, 2019, 229 (01) :307-339
[9]   On Three Balls Theorem for Discrete Harmonic Functions [J].
Guadie, Maru ;
Malinnikova, Eugenia .
COMPUTATIONAL METHODS AND FUNCTION THEORY, 2014, 14 (04) :721-734
[10]  
HEILBRONN HA, 1949, P CAMB PHILOS SOC, V45, P194