THE EUCLIDEAN ALGORITHM IN QUINTIC AND SEPTIC CYCLIC FIELDS

被引:3
作者
Lezowski, Pierre [1 ]
Mcgown, Kevin J. [2 ]
机构
[1] Univ Blaise Pascal, Lab Math, UMR 6620, Campus Univ Cezeaux,BP 80026, F-63171 Aubiere, France
[2] Calif State Univ Chico, Dept Math & Stat, 601 E Main St, Chico, CA 95929 USA
关键词
CUBIC FIELDS; NUMBER-FIELDS; NON-RESIDUE;
D O I
10.1090/mcom/3169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Conditionally on the Generalized Riemann Hypothesis (GRH), we prove the following results: (1) a cyclic number field of degree 5 is norm Euclidean if and only if Delta = 11(4), 31(4), 41(4); (2) a cyclic number field of degree 7 is norm-Euclidean if and only if Delta = 29(6), 43(6); (3) there are no norm-Euclidean cyclic number fields of degrees 19, 31, 37, 43, 47, 59, 67, 71, 73, 79, 97. Our proofs contain a large computational component, including the calculation of the Euclidean minimum in some cases; the correctness of these calculations does not depend upon the GRH. Finally, we improve on what is known unconditionally in the cubic case by showing that any norm-Euclidean cyclic cubic field must have conductor f <= 157 except possibly when f E (2 center dot 10(14), 10(50)).
引用
收藏
页码:2535 / 2549
页数:15
相关论文
共 19 条
[11]  
Lezowski P, 2014, MATH COMPUT, V83, P1397
[12]   On the second smallest prime non-residue [J].
McGown, Kevin J. .
JOURNAL OF NUMBER THEORY, 2013, 133 (04) :1289-1299
[13]   Norm-Euclidean Galois fields and the Generalized Riemann Hypothesis [J].
McGown, Kevin J. .
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2012, 24 (02) :425-445
[14]   NORM-EUCLIDEAN CYCLIC FIELDS OF PRIME DEGREE [J].
McGown, Kevin J. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (01) :227-254
[15]  
SMITH JR, 1969, J LONDON MATH SOC, V44, P577
[16]   CALCULATION OF GAMMA FUNCTION BY STIRLINGS FORMULA [J].
SPIRA, R .
MATHEMATICS OF COMPUTATION, 1971, 25 (114) :317-&
[17]  
Trevino E., 2012, J COMB NUMBER THEORY, V2, P56
[18]   The Burgess inequality and the least kth power non-residue [J].
Trevino, Enrique .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (05) :1653-1678
[19]   The least k-th power non-residue [J].
Trevino, Enrique .
JOURNAL OF NUMBER THEORY, 2015, 149 :201-224