Matching polytopes, toric geometry, and the totally non-negative Grassmannian

被引:53
作者
Postnikov, Alexander [2 ]
Speyer, David [2 ]
Williams, Lauren [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
Total positivity; Grassmannian; CW complexes; Birkhoff polytope; Matching; Matroid polytope; Cluster algebra;
D O I
10.1007/s10801-008-0160-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we use toric geometry to investigate the topology of the totally non-negative part of the Grassmannian, denoted (Gr(k),(n))(>= 0). This is a cell complex whose cells Delta(G) can be parameterized in terms of the combinatorics of plane-bipartite graphs G. To each cell Delta(G) we associate a certain polytope P(G). The polytopes P(G) are analogous to the well-known Birkhoff polytopes, and we describe their face lattices in terms of matchings and unions of matchings of G. We also demonstrate a close connection between the polytopes P(G) and matroid polytopes. We use the data of P(G) to define an associated toric variety X-G. We use our technology to prove that the cell decomposition of (Gr(k),(n))(>= 0) is a CW complex, and furthermore, that the Euler characteristic of the closure of each cell of (Gr(k),(n))(>= 0) is 1.
引用
收藏
页码:173 / 191
页数:19
相关论文
共 23 条
[1]  
[Anonymous], PROGR MATH
[2]  
BILLERA L, 1996, DIMACS SERIES DISCRE, V24
[3]  
Cox D., 2003, Topics in algebraic geometry and geometric modeling, Contemp. Math., V334, P203
[4]   Cluster algebras I: Foundations [J].
Fomin, S ;
Zelevinsky, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (02) :497-529
[5]  
Fomin S, 2000, MICH MATH J, V48, P253
[6]  
Fulton W., 1993, The William H. Roever Lectures in Geometry, V131, DOI DOI 10.1515/9781400882526
[7]  
GAWRILOW E, POLYMAKE FRAMEWORK A
[8]   COMBINATORIAL GEOMETRIES, CONVEX POLYHEDRA, AND SCHUBERT CELLS [J].
GELFAND, IM ;
GORESKY, RM ;
MACPHERSON, RD ;
SERGANOVA, VV .
ADVANCES IN MATHEMATICS, 1987, 63 (03) :301-316
[9]  
Lovasz L., 1986, MATCHING THEORY
[10]  
Lusztig G, 1998, DE GRU EX M, V26, P133