All classes of informationally complete symmetric measurements in finite dimensions

被引:21
|
作者
Siudzinska, Katarzyna [1 ]
机构
[1] Nicolaus Copernicus Univ Torun, Fac Phys Astron & Informat, Inst Phys, Ul Grudziadzka 5, PL-87100 Torun, Poland
关键词
ENTROPIC UNCERTAINTY; QUANTUM;
D O I
10.1103/PhysRevA.105.042209
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A broad class of informationally complete symmetric measurements is introduced. It can be understood as a common generalization of symmetric, informationally complete positive operator-valued measures and mutually unbiased bases. Additionally, it provides a natural way to define two more families of mutually unbiased symmetric measurement operators in any finite dimension. We show a general method of their construction, together with an example of an optimal measurement. Finally, we analyze the properties of symmetric measurements and provide applications in entropic relations and entanglement detection.
引用
收藏
页数:6
相关论文
共 11 条
  • [1] Construction of all general symmetric informationally complete measurements
    Gour, Gilad
    Kalev, Amir
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (33)
  • [2] The Lie algebraic significance of symmetric informationally complete measurements
    Appleby, D. M.
    Flammia, Steven T.
    Fuchs, Christopher A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (02)
  • [3] Schmidt number criterion via general symmetric informationally complete measurements
    Wang, Zhen
    Sun, Bao-Zhi
    Fei, Shao-Ming
    Wang, Zhi-Xi
    QUANTUM INFORMATION PROCESSING, 2024, 23 (12)
  • [4] Experimental characterization of qutrits using symmetric informationally complete positive operator-valued measurements
    Medendorp, Z. E. D.
    Torres-Ruiz, F. A.
    Shalm, L. K.
    Tabia, G. N. M.
    Fuchs, C. A.
    Steinberg, A. M.
    PHYSICAL REVIEW A, 2011, 83 (05):
  • [5] Entropic uncertainty relations for general symmetric informationally complete positive operator-valued measures and mutually unbiased measurements
    Huang, Shan
    Chen, Zeng-Bing
    Wu, Shengjun
    PHYSICAL REVIEW A, 2021, 103 (04)
  • [6] Experimental scheme for qubit and qutrit symmetric informationally complete positive operator-valued measurements using multiport devices
    Tabia, Gelo Noel M.
    PHYSICAL REVIEW A, 2012, 86 (06):
  • [7] What Are the Minimal Conditions Required to Define a Symmetric Informationally Complete Generalized Measurement?
    Geng, Isabelle Jianing
    Golubeva, Kimberly
    Gour, Gilad
    PHYSICAL REVIEW LETTERS, 2021, 126 (10)
  • [8] Informational power of the Hoggar symmetric informationally complete positive operator-valued measure
    Szymusiak, Anna
    Slomczynski, Wojciech
    PHYSICAL REVIEW A, 2016, 94 (01)
  • [9] Distribution of entanglement and correlations in all finite dimensions
    Eltschka, Christopher
    Siewert, Jens
    QUANTUM, 2018, 2
  • [10] Time delay statistics for finite number of channels in all symmetry classes
    Novaes, Marcel
    EPL, 2022, 139 (02)