All-diamond functional surface micro-electrode arrays for brain-slice neural analysis

被引:12
作者
Vahidpour, Farnoosh [1 ]
Curley, Lowry [2 ]
Biro, Istvan [2 ]
McDonald, Matthew [1 ,3 ]
Croux, Dieter [1 ]
Pobedinskas, Paulius [1 ]
Haenen, Ken [1 ,3 ]
Giugliano, Michele [2 ,3 ,4 ,5 ]
Zivcova, Zuzana Vlckova [6 ]
Kavan, Ladislav [6 ]
Nesladek, Milos [1 ,3 ]
机构
[1] Hasselt Univ, Inst Mat Res IMO, Hasselt, Belgium
[2] Univ Antwerp, Dept Biomed Sci, Theoret Neurobiol & Neuroengn Lab, Antwerp, Belgium
[3] IMEC VZW, IMOMEC, Leuven, Belgium
[4] Swiss Fed Inst Technol Lausanne, Brain Mind Inst, Lausanne, Switzerland
[5] Univ Sheffield, Dept Comp Sci, Sheffield, S Yorkshire, England
[6] J Heyrovsky Inst Phys Chem AS CR, Vvi, Dept Elect Mat, Prague, Czech Republic
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2017年 / 214卷 / 02期
基金
比利时弗兰德研究基金会;
关键词
impedance spectroscopy; microelectrode arrays; surface termination; DOPED DIAMOND; RECORDINGS;
D O I
10.1002/pssa.201532347
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Diamond-based microelectrode arrays were fabricated by using nanocrystalline diamond as an insulating layer and conductive boron-doped in order to used them for analysis of brain cortical slices. MEA surface is solely composed of diamond, exposed to the cells. The impedance measurements showed negligible cross-talk between neighbouring diamond microelectrodes. Local field potentials related to neural signals were then successfully recorded from pharmacologically disinhibited rat cortical tissue slices, mechanically coupled on the surface of the MEA. The background signal level of the diamond MEAs was found to be lower than commercial Pt-based MEAs, under identical measurement conditions.
引用
收藏
页数:8
相关论文
共 30 条
[1]  
Allen M., 1994, CLIN MAT, V17, P6605
[2]   A diamond-based biosensor for the recording of neuronal activity [J].
Ariano, Paolo ;
Lo Giudice, Alessandro ;
Marcantoni, Andrea ;
Vittone, Ettore ;
Carbone, Emilio ;
Lovisolo, Davide .
BIOSENSORS & BIOELECTRONICS, 2009, 24 (07) :2046-2050
[3]   3D shaped mechanically flexible diamond microelectrode arrays for eye implant applications: The MEDINAS project [J].
Bergonzo, P. ;
Bongrain, A. ;
Scorsone, E. ;
Bendali, A. ;
Rousseau, L. ;
Lissorgues, G. ;
Mailley, P. ;
Li, Y. ;
Kauffmann, T. ;
Goy, F. ;
Yvert, B. ;
Sahel, J. A. ;
Picaud, S. .
IRBM, 2011, 32 (02) :91-94
[4]   Diamond solution-gated field effect transistors: Properties and bioelectronic applications [J].
Dankerl, Markus ;
Hauf, Moritz V. ;
Stutzmann, Martin ;
Garrido, Jose A. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2012, 209 (09) :1631-1642
[5]   Diamond Transistor Array for Extracellular Recording From Electrogenic Cells [J].
Dankerl, Markus ;
Eick, Stefan ;
Hofmann, Boris ;
Hauf, Moritz ;
Ingebrandt, Sven ;
Offenhaeusser, Andreas ;
Stutzmann, Martin ;
Garrido, Jose A. .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (18) :2915-2923
[6]   Three levels of neuroelectronic interfacing - Silicon chips with ion channels, nerve cells, and brain tissue [J].
Fromherz, Peter .
PROGRESS IN CONVERGENCE: TECHNOLOGIES FOR HUMAN WELLBEING, 2006, 1093 :143-160
[7]   Diamond-like carbon coatings as biocompatible materials - an overview [J].
Grill, A .
DIAMOND AND RELATED MATERIALS, 2003, 12 (02) :166-170
[8]  
Hai A, 2010, NAT METHODS, V7, P200, DOI [10.1038/nmeth.1420, 10.1038/NMETH.1420]
[9]   Chronic in vivo nerve electrical recordings of Aplysia californica using a boron-doped polycrystalline diamond electrode [J].
Halpern, Jeffrey M. ;
Cullins, Miranda J. ;
Chiel, Hillel J. ;
Martin, Heidi B. .
DIAMOND AND RELATED MATERIALS, 2010, 19 (2-3) :178-181
[10]   Diamond electrodes for neurodynamic studies in Aplysia californica [J].
Halpern, JM ;
Xie, ST ;
Sutton, GP ;
Higashikubo, BT ;
Chestek, CA ;
Lu, H ;
Chiel, HJ ;
Martin, HB .
DIAMOND AND RELATED MATERIALS, 2006, 15 (2-3) :183-187