Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order

被引:24
作者
Aliyev, Z. S. [1 ,2 ]
机构
[1] Azerbaijan Natl Acad Sci, Inst Math & Mech, Baku, Azerbaijan
[2] Baku State Univ, Fac Mech & Math, Baku, Azerbaijan
关键词
bifurcation point; bifurcation interval; eigenvalue; eigenfunction; continuum of solutions; BOUNDARY-VALUE-PROBLEMS; POSITIVE SOLUTIONS; PRUFER TRANSFORMATION; NODAL SOLUTIONS; OSCILLATION; EIGENFUNCTIONS;
D O I
10.1070/SM8369
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Nonlinear eigenvalue problems are investigated for ordinary differential equations of fourth order. Local and global bifurcations of non-trivial solutions of these problems are investigated. It is shown that the set of nontrivial solutions of the problems under consideration that bifurcate from points and intervals of the line of trivial solutions contains unbounded continua.
引用
收藏
页码:1625 / 1649
页数:25
相关论文
共 44 条
[1]   Oscillation properties of the eigenfunctions of fourth-order completely regular Sturmian systems [J].
Aliev, Z. S. ;
Agaev, E. A. .
DOKLADY MATHEMATICS, 2014, 90 (03) :657-659
[2]  
Aliev Z.S., 2008, T NAS AZERB PTMSMM, V28, P17
[3]  
Aliyev Z. S., 2011, VESTNIK BAKIN U FM, P40
[4]  
Aliyev Z. S., 2001, VESTNIK BAKIN U FM, P115
[5]   Some global results for nonlinear fourth order eigenvalue problems [J].
Aliyev, Ziyatkhan S. .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (12) :1811-1828
[6]  
[Anonymous], 1984, GEOMETRICAL METHODS
[7]  
[Anonymous], 1973, Rocky Mountain J. Math., DOI 10.1216/RMJ-1973-3-2-161
[8]  
[Anonymous], 1982, GRUNDLEHREN MATH WIS
[9]  
[Anonymous], 1964, Topological Methods in the Theory of Nonlinear Integral Equations
[10]  
BANKS DO, 1974, T AM MATH SOC, V199, P203